THREE TYPES OF MEASURES


摘自《Data Mining - Concepts and Techniques

 

Measures can be organized into three categories (i.e., distributive, algebraic, holistic), based on the kind of aggregate functions used.

Distributive: An aggregate function is distributive if it can be computed in a distributed manner as follows. Suppose the data are partitioned into n sets.We apply the function to each partition, resulting in n aggregate values. If the result derived by applying the function to the n aggregate values is the same as that derived by applying the function to the entire data set (without partitioning), the function can be computed in a distributed manner. For example, count() can be computed for a data cube by first partitioning the cube into a set of subcubes, computing count() for each subcube, and then summing up the counts obtained for each subcube. Hence, count() is a distributive aggregate function. For the same reason, sum(), min(), and max() are distributive aggregate functions. A measure is distributive if it is obtained by applying a distributive aggregate function. Distributive measures can be computed efficiently because they can be computed in a distributive manner.

       Algebraic: An aggregate function is algebraic if it can be computed by an algebraic function with M arguments (where M is a bounded positive integer), each of which is obtained by applying a distributive aggregate function. For example, avg() (average) can be computed by sum()/count(), where both sum() and count() are distributive aggregate functions. Similarly, it can be shown that min N() and max N() (which find the N minimum and N maximum values, respectively, in a given set) and standard deviation() are algebraic aggregate functions. A measure is algebraic if it is obtained by applying an algebraic aggregate function.

       Holistic: An aggregate function is holistic if there is no constant bound on the storage size needed to describe a subaggregate. That is, there does not exist an algebraic function with M arguments (where M is a constant) that characterizes the computation. Common examples of holistic functions include median(), mode(), and rank(). A measure is holistic if it is obtained by applying a holistic aggregate function.

猜你喜欢

转载自goaheadtw.iteye.com/blog/1734026