caffe——全连接层inner_product_layer

  在caffe中,全连接层叫做"inner_product_layer",区别于tensorflow中的fullyconnected_layer。

 

1、prototxt中的定义

layer {
  bottom: "fc7"
  top: "fc8"
  name: "fc8"
  type: "InnerProduct"
  param {  # 权重学习参数 lr_mult: 10 # 学习率 decay_mult: 1 } param { # bias 学习参数 lr_mult: 20 # 一般情况,bias 学习率是权重学习率的两倍. decay_mult: 0 } inner_product_param { num_output: 1000 # 输出单元个数 weight_filler { # 权重初始化方法 type: "gaussian" std: 0.005 } bias_filler { # bias 初始化方法 type: "constant" value: 0.1 } } }


2、caffe.proto中的定义
message LayerParameter {
    optional InnerProductParameter inner_product_param = 117;
}

message InnerProductParameter {
  optional uint32 num_output = 1;   // 网络层输出个数
  optional bool bias_term = 2 [default = true]; // 是否有 bias 项 optional FillerParameter weight_filler = 3; // 权重weight filler optional FillerParameter bias_filler = 4; // 偏置bias filler // 在第一个 axis 进行单个内积计算. // -1 表示最后一个 axis optional int32 axis = 5 [default = 1]; //权重矩阵是否进行转置 optional bool transpose = 6 [default = false]; }

3、inner_product_layer.hpp
#ifndef CAFFE_INNER_PRODUCT_LAYER_HPP_
#define CAFFE_INNER_PRODUCT_LAYER_HPP_

#include <vector>

#include "caffe/blob.hpp" #include "caffe/layer.hpp" #include "caffe/proto/caffe.pb.h" namespace caffe { /** * @brief Also known as a "fully-connected" layer, computes an inner product * with a set of learned weights, and (optionally) adds biases. * * TODO(dox): thorough documentation for Forward, Backward, and proto params. */ template <typename Dtype> class InnerProductLayer : public Layer<Dtype> { public: explicit InnerProductLayer(const LayerParameter& param) : Layer<Dtype>(param) {} virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top); virtual void Reshape(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top); virtual inline const char* type() const { return "InnerProduct"; } virtual inline int ExactNumBottomBlobs() const { return 1; } virtual inline int ExactNumTopBlobs() const { return 1; } protected: virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top); virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top); virtual void Backward_cpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom); virtual void Backward_gpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom); int M_; # 样本个数 int K_; # 特征维度 int N_; # 输出神经元个数 bool bias_term_; Blob<Dtype> bias_multiplier_; bool transpose_; ///< if true, assume transposed weights }; } // namespace caffe #endif // CAFFE_INNER_PRODUCT_LAYER_HPP_

4、inner_product_layer.cpp
#include <vector>

#include "caffe/filler.hpp"
#include "caffe/layers/inner_product_layer.hpp" #include "caffe/util/math_functions.hpp" namespace caffe { template <typename Dtype> void InnerProductLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { const int num_output = this->layer_param_.inner_product_param().num_output(); // 输出单元个数 bias_term_ = this->layer_param_.inner_product_param().bias_term(); transpose_ = this->layer_param_.inner_product_param().transpose(); N_ = num_output; const int axis = bottom[0]->CanonicalAxisIndex( this->layer_param_.inner_product_param().axis()); // axis 维数据被 flattened 为长度为 K_ 的向量 // 例如,bottom[0] - (N, C, H, W), axis=1, 则从 C 维开始,对维度CHW 进行 N 个内积. // 输出: N x (C1 + C2 + ... + CK) x H x W // 样本个数 x 输出单元个数 x 1 x 1 (M x N x 1 x 1) K_ = bottom[0]->count(axis); // Check if we need to set up the weights if (this->blobs_.size() > 0) { LOG(INFO) << "Skipping parameter initialization"; } else { if (bias_term_) { this->blobs_.resize(2); } else { this->blobs_.resize(1); } // 权重初始化 vector<int> weight_shape(2); if (transpose_) { // 权重矩阵是否进行转置 weight_shape[0] = K_; weight_shape[1] = N_; } else { weight_shape[0] = N_; weight_shape[1] = K_; } this->blobs_[0].reset(new Blob<Dtype>(weight_shape)); // 初始化权重 // blobs_[0],N_ x K_ x 1 x 1 shared_ptr<Filler<Dtype> > weight_filler(GetFiller<Dtype>( this->layer_param_.inner_product_param().weight_filler())); weight_filler->Fill(this->blobs_[0].get()); // 如果有 bias 项,则初始化 // blobs_[1],每个输出对应一个 bias,共 N_ 个. if (bias_term_) { vector<int> bias_shape(1, N_); this->blobs_[1].reset(new Blob<Dtype>(bias_shape)); shared_ptr<Filler<Dtype> > bias_filler(GetFiller<Dtype>( this->layer_param_.inner_product_param().bias_filler())); bias_filler->Fill(this->blobs_[1].get()); } } // 参数初始化 this->param_propagate_down_.resize(this->blobs_.size(), true); } template <typename Dtype> void InnerProductLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { // Figure out the dimensions const int axis = bottom[0]->CanonicalAxisIndex( this->layer_param_.inner_product_param().axis()); const int new_K = bottom[0]->count(axis); CHECK_EQ(K_, new_K) << "Input size incompatible with inner product parameters."; // The first "axis" dimensions are independent inner products; the total // number of these is M_, the product over these dimensions. M_ = bottom[0]->count(0, axis); // 样本数,batchsize // The top shape will be the bottom shape with the flattened axes dropped, // and replaced by a single axis with dimension num_output (N_). vector<int> top_shape = bottom[0]->shape(); top_shape.resize(axis + 1); top_shape[axis] = N_; top[0]->Reshape(top_shape); // Set up the bias multiplier if (bias_term_) { vector<int> bias_shape(1, M_); bias_multiplier_.Reshape(bias_shape); caffe_set(M_, Dtype(1), bias_multiplier_.mutable_cpu_data()); // 均设为 1 } } // 前向计算 // Y = W * x + b template <typename Dtype> void InnerProductLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { const Dtype* bottom_data = bottom[0]->cpu_data(); Dtype* top_data = top[0]->mutable_cpu_data(); const Dtype* weight = this->blobs_[0]->cpu_data(); caffe_cpu_gemm<Dtype>(CblasNoTrans, transpose_ ? CblasNoTrans : CblasTrans, M_, N_, K_, (Dtype)1., bottom_data, weight, (Dtype)0., top_data); if (bias_term_) { caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, M_, N_, 1, (Dtype)1., bias_multiplier_.cpu_data(), this->blobs_[1]->cpu_data(), (Dtype)1., top_data); } } // 反向计算 template <typename Dtype> void InnerProductLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { if (this->param_propagate_down_[0]) { const Dtype* top_diff = top[0]->cpu_diff(); // top_diff: N x M, 每一列为一个样本的 error. const Dtype* bottom_data = bottom[0]->cpu_data(); // Gradient with respect to weight // 关于 weight 的梯度 if (transpose_) { caffe_cpu_gemm<Dtype>(CblasTrans, CblasNoTrans, K_, N_, M_, (Dtype)1., bottom_data, top_diff, (Dtype)1., this->blobs_[0]->mutable_cpu_diff()); } else { caffe_cpu_gemm<Dtype>(CblasTrans, CblasNoTrans, N_, K_, M_, (Dtype)1., top_diff, bottom_data, (Dtype)1., this->blobs_[0]->mutable_cpu_diff()); } } if (bias_term_ && this->param_propagate_down_[1]) { const Dtype* top_diff = top[0]->cpu_diff(); // Gradient with respect to bias caffe_cpu_gemv<Dtype>(CblasTrans, M_, N_, (Dtype)1., top_diff, bias_multiplier_.cpu_data(), (Dtype)1., this->blobs_[1]->mutable_cpu_diff()); } if (propagate_down[0]) { const Dtype* top_diff = top[0]->cpu_diff(); // Gradient with respect to bottom data if (transpose_) { caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasTrans, M_, K_, N_, (Dtype)1., top_diff, this->blobs_[0]->cpu_data(), (Dtype)0., bottom[0]->mutable_cpu_diff()); } else { caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, M_, K_, N_, (Dtype)1., top_diff, this->blobs_[0]->cpu_data(), (Dtype)0., bottom[0]->mutable_cpu_diff()); } } } #ifdef CPU_ONLY STUB_GPU(InnerProductLayer); #endif INSTANTIATE_CLASS(InnerProductLayer); REGISTER_LAYER_CLASS(InnerProduct); } // namespace caffe
 
 

猜你喜欢

转载自www.cnblogs.com/jianfeifeng/p/11010865.html