c程序的软件构建流程-由源码安装redis引起的思考

redis是由c语言写的,所以源码安装redis需要清楚c语言的构建流程。

对于复杂项目的编译过程:

Configure:`configure` 只是一个 shell script, 与编译器毛线关系没有. `shell通过运行这个脚本,获知编译参数

Make

Make install

他们是什么意思呢:

构建脚本、预处理、编译、链接、安装、装载执行

第一步 配置(configure)

编译器在开始工作之前,需要知道当前的系统环境,比如标准库在哪里、软件的安装位置在哪里、需要安装哪些组件等等。这是因为不同计算机的系统环境不一样,通过指定编译参数,编译器就可以灵活适应环境,编译出各种环境都能运行的机器码。这个确定编译参数的步骤,就叫做"配置"(configure)。

这些配置信息保存在一个配置文件之中,约定俗成是一个叫做configure的脚本文件。通常它是由autoconf工具生成的。编译器通过运行这个脚本,获知编译参数。

configure脚本已经尽量考虑到不同系统的差异,并且对各种编译参数给出了默认值。如果用户的系统环境比较特别,或者有一些特定的需求,就需要手动向configure脚本提供编译参数。

第二步 确定标准库和头文件的位置

源码肯定会用到标准库函数(standard library)和头文件(header)。它们可以存放在系统的任意目录中,编译器实际上没办法自动检测它们的位置,只有通过配置文件才能知道。

编译的第二步,就是从配置文件中知道标准库和头文件的位置。一般来说,配置文件会给出一个清单,列出几个具体的目录。等到编译时,编译器就按顺序到这几个目录中,寻找目标。

 

第三步 确定依赖关系

对于大型项目来说,源码文件之间往往存在依赖关系,编译器需要确定编译的先后顺序。假定A文件依赖于B文件,编译器应该保证做到下面两点。

(1)只有在B文件编译完成后,才开始编译A文件。

(2)当B文件发生变化时,A文件会被重新编译。

编译顺序保存在一个叫做makefile的文件中,里面列出哪个文件先编译,哪个文件后编译。而makefile文件由configure脚本运行生成,这就是为什么编译时configure必须首先运行的原因。

在确定依赖关系的同时,编译器也确定了,编译时会用到哪些头文件。

第四步 头文件的预编译(precompilation)make

不同的源码文件,可能引用同一个头文件(比如stdio.h)。编译的时候,头文件也必须一起编译。为了节省时间,编译器会在编译源码之前,先编译头文件。这保证了头文件只需编译一次,不必每次用到的时候,都重新编译了。

不过,并不是头文件的所有内容,都会被预编译。用来声明宏的#define命令,就不会被预编译。

第五步 预处理(Preprocessing)make

预编译完成后,编译器就开始替换掉源码中bash的头文件和宏。以本文开头的那段源码为例,它包含头文件stdio.h,替换后的样子如下。

 

extern int fputs(const char *, FILE *);

extern FILE *stdout;

 

int main(void){

    fputs("Hello, world!\n", stdout);

    return 0;}

为了便于阅读,上面代码只截取了头文件中与源码相关的那部分,即fputs和FILE的声明,省略了stdio.h的其他部分(因为它们非常长)。另外,上面代码的头文件没有经过预编译,而实际上,插入源码的是预编译后的结果。编译器在这一步还会移除注释。

这一步称为"预处理"(Preprocessing),因为完成之后,就要开始真正的处理了。

第六步 编译(Compilation)make

预处理之后,编译器就开始生成机器码。对于某些编译器来说,还存在一个中间步骤,会先把源码转为汇编码(assembly),然后再把汇编码转为机器码。

下面是本文开头的那段源码转成的汇编码。

 

    .file   "test.c"

    .section    .rodata.LC0:

    .string "Hello, world!\n"

    .text

    .globl  main

    .type   main, @function

main:.LFB0:

    .cfi_startproc

    pushq   %rbp

    .cfi_def_cfa_offset 16

    .cfi_offset 6, -16

    movq    %rsp, %rbp

    .cfi_def_cfa_register 6

    movq    stdout(%rip), %rax

    movq    %rax, %rcx

    movl    $14, %edx

    movl    $1, %esi

    movl    $.LC0, %edi

    call    fwrite

    movl    $0, %eax

    popq    %rbp

    .cfi_def_cfa 7, 8

    ret

    .cfi_endproc.LFE0:

    .size   main, .-main

    .ident  "GCC: (Debian 4.9.1-19) 4.9.1"

    .section    .note.GNU-stack,"",@progbits

这种转码后的文件称为对象文件(object file)。

第七步 连接(Linking)make

对象文件还不能运行,必须进一步转成可执行文件。如果你仔细看上一步的转码结果,会发现其中引用了stdout函数和fwrite函数。也就是说,程序要正常运行,除了上面的代码以外,还必须有stdout和fwrite这两个函数的代码,它们是由C语言的标准库提供的。

编译器的下一步工作,就是把外部函数的代码(通常是后缀名为.lib和.a的文件),添加到可执行文件中。这就叫做连接(linking)。这种通过拷贝,将外部函数库添加到可执行文件的方式,叫做静态连接(static linking),后文会提到还有动态连接(dynamic linking)。

make命令的作用,就是从第四步头文件预编译开始,一直到做完这一步。

第八步 安装(Installation)

上一步的连接是在内存中进行的,即编译器在内存中生成了可执行文件。下一步,必须将可执行文件保存到用户事先指定的安装目录。

表面上,这一步很简单,就是将可执行文件(连带相关的数据文件)拷贝过去就行了。但是实际上,这一步还必须完成创建目录、保存文件、设置权限等步骤。这整个的保存过程就称为"安装"(Installation)。

第九步 操作系统连接

可执行文件安装后,必须以某种方式通知操作系统,让其知道可以使用这个程序了。比如,我们安装了一个文本阅读程序,往往希望双击txt文件,该程序就会自动运行。

这就要求在操作系统中,登记这个程序的元数据:文件名、文件描述、关联后缀名等等。Linux系统中,这些信息通常保存在/usr/share/applications目录下的.desktop文件中。另外,在Windows操作系统中,还需要在Start启动菜单中,建立一个快捷方式。

这些事情就叫做"操作系统连接"。make install命令,就用来完成"安装"和"操作系统连接"这两步。

第十步 生成安装包

写到这里,源码编译的整个过程就基本完成了。但是只有很少一部分用户,愿意耐着性子,从头到尾做一遍这个过程。事实上,如果你只有源码可以交给用户,他们会认定你是一个不友好的家伙。大部分用户要的是一个二进制的可执行程序,立刻就能运行。这就要求开发者,将上一步生成的可执行文件,做成可以分发的安装包。

所以,编译器还必须有生成安装包的功能。通常是将可执行文件(连带相关的数据文件),以某种目录结构,保存成压缩文件包,交给用户。

 

 

第十一步 动态连接(Dynamic linking)

正常情况下,到这一步,程序已经可以运行了。至于运行期间(runtime)发生的事情,与编译器一概无关。但是,开发者可以在编译阶段选择可执行文件连接外部函数库的方式,到底是静态连接(编译时连接),还是动态连接(运行时连接)。所以,最后还要提一下,什么叫做动态连接。

前面已经说过,静态连接就是把外部函数库,拷贝到可执行文件中。这样做的好处是,适用范围比较广,不用担心用户机器缺少某个库文件;缺点是安装包会比较大,而且多个应用程序之间,无法共享库文件。动态连接的做法正好相反,外部函数库不进入安装包,只在运行时动态引用。好处是安装包会比较小,多个应用程序可以共享库文件;缺点是用户必须事先安装好库文件,而且版本和安装位置都必须符合要求,否则就不能正常运行。

现实中,大部分软件采用动态连接,共享库文件。这种动态共享的库文件,Linux平台是后缀名为.so的文件,Windows平台是.dll文件,Mac平台是.dylib文件

 

configure不是编译阶段,甚至不是预编译阶段。只能算编译前的准备阶段。生成makefile。配置编译的一些选项,检查
编译文件需要的环境是否满足,如不满足,则报错,停止工作。
另外生成makefile只是configure的部分工作。真正的makefile,是从makefile.in模板文件中导入的。所以想构建
自己的configure体系,仍需要自己提供makefile.in文件,提供依赖关系。

 

文中在介绍make的工作时,说“链接在内存中进行,在内存中生成了可执行文件”。
这里我有点看不明白了。
我认为:链接过程就是(对静态链接来说)合并.o文件的过程,合并的结果以可执行文件形式保存在某个目录下。
也就是说,此时已经在文件系统中生成了“可执行文件”,只不过不在PATH目录下(对Linux来说),不能直接执行,需要make install,把程序复制到/usr/bin之类的目录,或者配置PATH才能直接执行。
但是,既然已经有了可执行文件,直接在命令行下输入其绝对路径就能运行,也就是说,只make而不make install也能用。
所以,我认为博主的“在内存中生成了可执行文件”有失偏驳。

预处理是 cpp,编译 gcc,链接 ld


内存中用来存储指令和数据的场所,是用地址来标记的。

 

 

控制器 运算器 寄存器,时钟,各部分之间用电流信号连接。寄存器用来暂时存储指令数据,也看作内存的一种。

控制器把内存指令数据读入寄存器,并根据指令执行结果控制整个计算机。

运算器负责运算寄存器内的数据。

 

内存通过控制芯片与cpu相连。

 

 

程序是吧寄存器作为对象描述的。

 

汇编语言使用助记符编写程序,每一个原本是电气信号的机器语言指令,都会有一个与其对应的助记符。汇编语言和机器语言基本上是一一对应的。

 

 

数据分为用于运算的数值,和表示内存地址的数值 两种,存储的寄存器也不同。

用于运算的数值放在累加寄存器中,用于表示内存地址的数值,放在基址寄存器和变址寄存器中。

 

对于程序员来说,cpu是各种功能寄存器的集合。其中,程序计数器=-下一条指令地址,累加寄存器-需要运算的数值和运算后的数珠,标志寄存器-运算处理后cpu

的状态,指令寄存器和站寄存器只有一个。

 

 

 

 

 

 

 

 

猜你喜欢

转载自blog.csdn.net/u013755520/article/details/89949884