CF1109DSasha and Interesting Fact from Graph Theory(数数)

题面

传送门

前置芝士

Prufer codes与Generalized Cayley's Formula

题解

不行了脑子已经咕咕了连这么简单的数数题都不会了……

首先这两个特殊点到底是啥并没有影响,我们假设它们为\(1,2\)好了

首先,我们需要枚举\(1,2\)之间的边数\(i\)

我们需要考虑这中间的\(i-1\)个点是哪些点,而且它们的顺序对答案有影响,方案数乘上\(A_{n-2}^{i-1}\)

\(i\)条边的的和要为\(m\),根据隔板法,方案数要乘上\({m-1\choose i-1}\)

剩下的边取值随便,方案数乘上\(m^{n-1-i}\)

我们要把\(n\)个点分成\(i\)棵树,且如果把中间的点依次标号为\(3,4,...,i+1\),它们所在的树要互不相同,根据\(Generalized\ Cayley's\ Formula\),方案数为\((i+1)n^{n-i-2}\)

综上,答案为

\[Ans=\sum_{i=1}^{n-1}A_{n-2}^{i-1}{m-1\choose i-1}m^{n-1-i}(i+1)n^{n-i-2}\]

//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int N=1e6+5,P=1e9+7;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
    R int res=1;
    for(;y;y>>=1,x=mul(x,x))(y&1)?res=mul(res,x):0;
    return res;
}
int fac[N],ifac[N],n,m,p,invn,invm,rn,rm,res;
inline int C(R int n,R int m){return 1ll*fac[n]*ifac[m]%P*ifac[n-m]%P;}
inline int A(R int n,R int m){return mul(fac[n],ifac[n-m]);}
int main(){
//  freopen("testdata.in","r",stdin);
    scanf("%d%d",&n,&m),p=max(n,m);
    fac[0]=ifac[0]=1;fp(i,1,p)fac[i]=mul(fac[i-1],i);
    ifac[p]=ksm(fac[p],P-2);fd(i,p-1,1)ifac[i]=mul(ifac[i+1],i+1);
    invn=ksm(n,P-2),invm=ksm(m,P-2),p=min(n-1,m),rn=rm=1;
    fp(i,1,n-2)rn=mul(rn,n),rm=mul(rm,m);rn=mul(rn,invn);
    fp(i,1,p)res=add(res,1ll*A(n-2,i-1)*C(m-1,i-1)%P*rn%P*rm%P*(i+1)%P),rn=mul(rn,invn),rm=mul(rm,invm);
    printf("%d\n",res);
    return 0;
}

猜你喜欢

转载自www.cnblogs.com/bztMinamoto/p/10661982.html