多项式专题

\(\color{red}{\text{约定:}}\)

\(1.F(x)\)表示一个普通的项数为\(2\)的幂次多项式,\(F_D(x)\)是他的点值表示。

\(2.w\)代表单位根,\(w_m\)表示\(m\)次单位根。

\(3.A\)代表一个数列。

\(4.g\)表示原根。

\(\color{red}{\text{多项式系列之零 底层知识:}}\)

多项式的表示:

多项式可以通过系数数列\(A\)表示,\(a_i\)\(x_i\)的系数。

多项式可以通过点值表示,对于一个\(n\)次多项式,取\(n\)种不同的\(x\)取值带入\(F(x)\),得到\(n\)个值,在取相同这\(n\)个数的意义下,可以唯一的表示这个多项式。

多项式乘法:

定义\(F(x)\oplus G(x)=\sum_{i=0}^n\sum_{j=0}^i f_ix^i\times g_{j-i}x^{j-i}\),在系数表示之下相乘复杂度\(\Theta(n^2)\),在点值表示之下\(F(x)\oplus G(x)=A_f\times A_g=\sum_{i=1}^n a_{fi}\times a_{gi}\),复杂度\(\Theta(n)\)

复数:

复数一般情况下可以表示成\(a+bi\)的形式,\(a,b\)是实数,\(i=\sqrt{-1}\)

复数的幅角:平面直角坐标系上点\((a,b)\)所在的任意角。

复数的模长:\(\sqrt{a^2+b^2}\)

两个复数相乘:\((a+bi)\times(c+di)=ac+adi+bci-bd=(ac-bd)+(ad+bc)i\),复数相乘之后,模长等于原来两个复数的模长的乘积,幅角的角度等于原来两个幅角的和。

扫描二维码关注公众号,回复: 5621184 查看本文章

复数可以加减乘除,可以和实数一样的带入\(F(x)\)

\(w\)

在单位圆上从\(w_m^0=(1,0)\)开始平均取\(m\)个点,从\(0\)开始编号,分别是\(w_m^0,w_m^1,w_m^2,w_m^3\cdots w_m^{m-1}\)

画图观察可得:

\(1.w_m^k=(cos(\frac k m 2\pi),sin(\frac k m 2\pi))\)所代表的复数

\(2.w_m^{-k}=(cos(\frac {-k} n 2\pi),sin(\frac {-k} n 2\pi))\)所代表的复数

\(3.w_m^m=w_m^0=(1,0)\)

\(4.w_m^m=-w_m^{\frac m 2}\)

\(5.w_{2m}^{2k}=w_m^k\)

\(6.w_m^{k+\frac m 2}=-w_m^k\)

DFT&IDFT:

科学的数学函数意义上DFT是讲一个函数转化成三角函数的加减乘除的形式,三角函数的系数是原函数系数与点值之间的变换规律。IDFT是DFT的逆变换。

\(g\)

\(1.\)什么是\(g\):在\(mod~p\)意义下\(g^i(i\in[0,p-1])\)互不相同,即\(g\)可以张成整个\(mod~p\)下的域。

\(2.g\)存在的条件:\(p=2,4,q^a,2q^a\)\(q\)是奇素数。

\(3.\)如何求\(g\):把\(\phi(p)\)进行质因数分解\(\phi(p)=\prod p_i^{a_i}\),如果对于任意的\(p_i\),总有\(g^{\frac {\phi(p)} {p_i}}\neq 1(mod~p)\),暴力枚举即可。

CRT合并:

求解\({\begin{cases}x\equiv a_1 (mod~p_1)\\x\equiv a_2 (mod~p_2)\end{cases}},\gcd(p_1,p_2)=1\)

\(x\equiv a_1 (mod~p_1)\),得
\[x-p_1y=a_1\]
\[x=a_1+p_1y\]
带入二式,得
\[a_1+p_1y\equiv a_2(mod~p_2)\]
\[p_1y\equiv a_2-a_1(mod~p_2)\]
\(\gcd(p1,p2)==1\),用逆元直接除便可;否则通过\(exgcd\)可求得\(y\),若无解则方程组无解。
最后\(x=p_1y+a_1(mod~p_1p_2)\)

牛顿迭代:

泰勒展开:

\(\color{red}{\text{多项式全集之一 FFT:}}\)

什么是FFT:

FFT是利用DFT的特殊性质,把\(w\)带入\(x\)从而\(\Theta(nlogn)\)求一个系数多项式的点值表示,所以叫FDFT。

\(w\)的具体应用:

\(1.\)可以方便的IDFT:

\(F(x)\)的系数是\(A\),在\(w_m\)的DFT下点值是\(B\)\(G(x)\)的系数是\(B\),在\(w_m^{-1}\)的DFT下点值是\(C\)

\[c_k=\sum_{i=0}^{m-1}b_iw_m^{-ki}\]
\[c_k=\sum_{i=0}^{m-1}(\sum_{j=0}^{m-1}a_jw_m^{ji})w_m^{-ki}\]
\[c_k=\sum_{j=0}^{m-1}a_j\sum_{i=0}^{m-1}w_m^{(j-k)i}\]
\(j-k=0\)\(\sum_{i=0}^{m-1}w_m^{(j-k)i}=m\),否则根据等比数列求和公式得
\[\frac{w_m^{(j-k)m}-1}{w_m^{j-k}-1}=\frac{w_m^{m(j-k)}-1}{w_m^{j-k}-1}=\frac{1-1}{w_m^{j-k}-1}=0\]
由此可得:\(c_k=m\times a_k\)\(a_k=\frac{c_k}{m}\)

综上所述,对于点值取的\(w\)相反数做DFT再除以\(m\)可得到系数。

\(2.\)可以快速的DFT:

直接将\(w\)带入多项式做DFT需要复杂度\(\Theta(n^2)\),我们利用\(w\)的性质优化:

\(F(x)\)按照奇偶分裂,\(F(x)=(a_0x^0+a_2x^2+a_4x^4+a_6x^6\cdots)+(a_1x^1+a_3x^3+a_5x^5+a_7x^7\cdots)\)

我们令
\[F_0(x)=a_0x^0+a_2x^1+a_4x^2+a_6x^3\cdots+a_{m-2}x^{\frac m 2}\]
\[F_1(x)=a_1x^0+a_3x^1+a_5x^2+a_6x^3\cdots+a_{m-1}x^{\frac m 2-1}\]
我们可以发现\(F(x)=F_0(x^2)+xF_1(x^2)\)

现在我们把\(w_m\)带入,令\(k<\frac m 2\)

\[F(w_m^k)=F_0(w_m^{2k})+w_m^kF_1(w_m^{2k})\]
\[F(w_m^k)=F_0(w_{\frac m 2}^{k})+w_m^kF_1(w_{\frac m 2}^{k})\]
****
\[F(w_m^{k+\frac m 2})=F_0(w_m^{2k+m})+w_m^{k+\frac m 2}F_1(w_m^{2k+m})\]
\[F(w_m^{k+\frac m 2})=F_0(w_{\frac m 2}^{k} )-w_m^{k}F_1(w_{\frac m 2}^{k})\]
我们知道取\(w_{\frac m 2}\)时,\(A_0,A_1\)的取值,就可以算出\(A(w_m)\),而\(A_0,A_1\)的长度都为\(A\)的一半,所以可以递归计算。

非递归优化FFT:

\(1.\)优化原理:

画图可知,递归版FFT最底层结束状态第\(i\)个位置的项是\(i\)二进制翻转后的结果。我们可以\(\Theta(n)\)的得到最底层的结果,然后向上模拟回溯合并即可。

\(2.\)蝴蝶变换:

由上述式子:
\[F(w_m^k)=F_0(w_{\frac m 2}^{k})+w_m^kF_1(w_{\frac m 2}^{k})\]
\[F(w_m^{k+\frac m 2})=F_0(w_{\frac m 2}^{k} )-w_m^{k}F_1(w_{\frac m 2}^{k})\]
可得在迭代时\(w_m^k\)\(w_m^{k+\frac m 2}\)都只与\(w_{\frac m 2}^k,w_{\frac m 2}^{k+\frac m 2}\)有关,所以我们可以用临时变量记录下一层的两个信息向上迭代。

共轭复数优化FFT:

\(1.\)优化原理:

(在DFT时)


\[D(x)=A(x)+iB(x)\]
\[E(x)=A(x)-iB(x)\]
那么
\[E_D(x)=conj(D_D(m-x))\]
\[A_D(x)=\frac{D_D(x)+E_D(x)} 2=\frac{D_D(x)+conj(D_D(m-x))} 2\]
\[B_D(x)=\frac{D_D(x)-E_D(x)} {2i}=-i\frac{D_D(x)-conj(D_D(m-x))} 2\]
\(2.\)证明:

\(step~1\)
\[D_D(w_m^k)=A_D(w_m^k)+iB_D(w_m^k)\]
\[D_D(w_m^k)=\sum_{j=0}^{m-1}a_jw_m^{jk}+ib_jw_m^{jk}\]
\[D_D(w_m^k)=\sum_{j=0}^{m-1}(a_j+ib_j)w_m^{jk}\]
\(step~2\):为方便起见,我们用\(X\)代替\(\frac{2\pi j k} {m}\)
\[E_D(w_m^k)=A_D(w_m^k)-iB_D(w_m^k)\]
\[E_D(w_m^k)=\sum_{j=0}^{m-1}a_jw_m^{jk}-ib_jw_m^{jk}\]
\[E_D(w_m^k)=\sum_{j=0}^{m-1}(a_j-ib_j)w_m^{jk}\]
\[E_D(w_m^k)=\sum_{j=0}^{m-1}(a_j-ib_j)(cosX+isinX)\]
\[E_D(w_m^k)=\sum_{j=0}^{m-1}(a_jcosX+b_jsinX)+i(a_jsinX-b_jcosX)\]
\[E_D(w_m^k)=conj\big(\sum_{j=0}^{m-1}(a_jcosX+b_jsinX)-i(a_jsinX-b_jcosX)\big)\]
\[E_D(w_m^k)=conj\big(\sum_{j=0}^{m-1}(a_jcosX+b_jsinX)-i(a_jsinX-b_jcosX)\big)\]
\[E_D(w_m^k)=conj\big(\sum_{j=0}^{m-1}(a_jcos(-X)-b_jsin(-X))+i(a_jsin(-X)+b_jcos(-X))\big)\]
\[E_D(w_m^k)=conj\big(\sum_{j=0}^{m-1}(a_j+ib_j)(cos(-X)+isin(-X)))\big)\]
\[E_D(w_m^k)=conj\big(\sum_{j=0}^{m-1}(a_j+ib_j)w_m^{-jk}\big)\]
\[E_D(w_m^k)=conj\big(\sum_{j=0}^{m-1}(a_j+ib_j)w_m^{jm-jk}\big)=conj(D_D(w_m^{m-k}))\]
而在IDFT时,我们需要
\[D_D(w_m^{-k})=\sum_{j=0}^{m-1}(a_j+ib_j)w_m^{-jk}\]
\[E_D(w_m^{-k})=conj\big(\sum_{j=0}^{m-1}(a_j+ib_j)w_m^{jk}\big)=conj(D_D(w_m^{k}))\]

数论优化FFT(NTT):

\(g^{\frac {p-1} m}\)\(w_m\)的共性:

\(1.(g^{\frac {p-1} m})^k\)\(w_m^k\)都互不相同\((k\in[0,m-1])\)

\(2.(g^{\frac {p-1} m})^m=g^{p-1}=1\)\(w_m^m=1\)

\(3.(g^{\frac {p-1} m})^{\frac m 2}=g^{\frac{p-1} 2}=\sqrt{g^{p-1}}\),由于原根的互不相同,\((g^{\frac {p-1} m})^{\frac m 2}=-1=-g^{p-1}=-(g^{\frac {p-1} m})^m\)\(w_m^m=-w_m^{\frac m 2}\)

\(4.(g^{\frac {p-1} {2m}})^{2k}=(g^{\frac {p-1} {m}})^{k}\)\(w_{2m}^{2k}=w_m^k\)

\(5.(g^{\frac {p-1} {m}})^{k+\frac m 2}=(g^{\frac {p-1} {m}})^{k}\times (g^{\frac {p-1} {m}})^{\frac m 2}=-(g^{\frac {p-1} {m}})^{k}\)\(w_m^{k+\frac m 2}=-w_m^k\)

因为有这些共性,所以\(g^{\frac {p-1} m}\)可以代替\(w_m\)

喜闻乐见的模板:

FFT模板(共轭优化)

namespace FFT{
    const double pi = acos(-1);
    struct cp{
        double x, y;
        cp() {x = y = 0;}
        cp(double X,double Y) {x = X; y = Y; }
        cp conj() {return (cp) {x, -y};}
    }a[3000005], b[3000005], c[3000005], I(0, 1), d[3000005];
     
    cp operator+ (const cp &a, const cp &b) {return (cp){a.x + b.x, a.y + b.y}; }
    cp operator- (const cp &a, const cp &b) {return (cp){a.x - b.x, a.y - b.y}; }
    cp operator* (const cp &a, const cp &b) {return (cp){a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x};}
    cp operator* (const cp &a, double b) {return (cp){a.x * b, a.y * b};}
    cp operator/ (const cp &a, double b) {return (cp){a.x / b, a.y / b};}
    struct p_l_e{
        int wz[3000005];
        void FFT(cp *a, int N, int op) {
            for(int i = 0; i < N; i++)
                if (i<wz[i]) swap(a[i],a[wz[i]]);
            for(int le = 2; le <= N; le <<= 1) {
                int mid = le >> 1;
                for(int i = 0; i < N; i += le) {
                    cp x, y, w = (cp) {1, 0};
                    cp wn = (cp){cos(op * pi / mid), sin(op * pi / mid)};
                    for(int j = 0 ; j < mid; j++) {
                        x = a[i + j]; y = a[i + j + mid] * w;
                        a[i + j] = x + y;
                        a[i + j + mid] = x - y;
                        w = w * wn;
                    }
                }
            }
        }
        void D_FFT(cp *a, cp *b, int N, int op){
            for(int i = 0; i < N; i++)  d[i] = a[i] + I * b[i];
            FFT(d, N, op);
            d[N] = d[0];
            for(int i = 0; i < N; i++){
                a[i] = (d[i] + d[N - i].conj()) / 2;
                b[i] = I * (-1) * (d[i] - d[N - i].conj()) / 2;
            }
            d[N] = cp(0, 0);
        }
        void mult(cp *a, cp *b, cp *c, int M){
            int N = 1, len = 0;
            while(N < M) N <<= 1, len++;
            for(int i = 0; i < N; i++)
                wz[i] = (wz[i >> 1] >> 1) | ((i & 1) << (len - 1));
            D_FFT(a, b, N, 1);
            for(int i = 0; i < N; i++)  c[i] = a[i] * b[i];
            FFT(c, N, -1);
            for(int i = 0; i < N; i++)  c[i].x = c[i].x / N;
        }
    }PLE;
    int n, m;
    void main() {
        scanf("%d%d", &n, &m); n++; m++;
        for(int i = 0; i < n; i++) scanf("%lf", &a[i].x);
        for(int i = 0; i < m; i++) scanf("%lf", &b[i].x);
        PLE.mult(a, b, c, n + m - 1); 
        for(int i = 0; i < n + m - 1; i++)  printf("%d ", (int)round(c[i].x));
        return;
    }
}

NTT模板:

namespace NTT{
    typedef long long LL;
    const int mod = 998244353;
    const int g = 3;
    LL a[3000005], b[3000005], c[3000005];
    int n, m;
    LL qpow(LL a, LL b){
        LL ans = 1;
        while(b){
            if(b & 1)   ans = ans * a % mod;
            a = a * a % mod;
            b >>= 1;
        }
        return ans;
    }
    struct p_l_e{
        int wz[3000005];
        void NTT(LL *a, int N, int op) {
            for(int i = 0; i < N; i++) 
                if(i < wz[i]) swap(a[i], a[wz[i]]);
            for(int le = 2; le <= N; le <<= 1) {
                int mid = le >> 1;
                LL wn = qpow(g, (mod - 1) / le);
                if(op == -1) wn = qpow(wn, mod - 2); 
                for(int i = 0; i < N; i += le) {
                    int w = 1, x, y;
                    for(int j = 0; j < mid; j++) {
                        x = a[i + j]; 
                        y = a[i + j + mid] * w % mod; 
                        a[i + j] = (x + y) % mod;
                        a[i + j + mid] = (x - y + mod) % mod;
                        w = w * wn % mod;
                    }
                }
            }
        }
        void mult(LL *a, LL *b, LL *c, int M) {
            int N = 1, len = 0;
            while(N < M)    N <<= 1, len++;
            for(int i = 0; i < N; i++)  
                wz[i] = (wz[i >> 1] >> 1) | ((i & 1) << (len - 1));
            NTT(a, N, 1); NTT(b, N, 1);
            for(int i = 0; i < N; i++)  c[i] = a[i] * b[i] % mod;
            NTT(c, N, -1);
            LL t = qpow(N, mod - 2);
            for(int i = 0; i < N; i++)  c[i] = c[i] * t % mod;
        }
    }PLE;
    void main() {
        scanf("%d%d", &n, &m); n++; m++;
        for(int i = 0; i < n; i++)  scanf("%lld", &a[i]);
        for(int i = 0; i < m; i++)  scanf("%lld", &b[i]);
        PLE.mult(a, b, c, n + m - 1);
        for(int i = 0; i < n + m - 1; i++)  printf("%lld ", c[i]);
    }
}

\(\color{red}{\text{多项式全集之二 任长任模的FFT:}}\)

三模NTT实现任模FFT:

\(1.\)为什么要用MTT:当\(p\)不是NTT模数或者多项式长度大于模数限制时,就要使用MTT。

\(2.\)MTT的使用原理:我们对初始多项式取模,那么如果在不取模卷积情况下,答案\(x\)不会超过\(N\times p^2\)。我们取三个NTT模数\(p_1,p_2,p_3\),分别做多项式乘法,得到\(x\)分别\(mod~p_1,p_2,p_3\)的答案,通过CRT合并可以得到\(x~mod~p_1p_2p_3\)的答案,如果\(x<p_1p_2p_3\)那么就可以得到准确的答案,再对\(p\)取模即可。

\(3.\)CRT合并的小优化:

\(step~0:\)初始式子
\[{\begin{cases}x\equiv c_1(mod~p_1)\\x\equiv c_2(mod~p_2)\\x\equiv c_3(mod~p_3)\end{cases}}\]
\(step~1:\)把一式二式合并(LL范围内)。
\[{\begin{cases}x\equiv a(mod~p_1p_2)\\x\equiv c_3(mod~p_3)\end{cases}}\]
\(step~2:\)再次合并(不需要\(long~double\) 快速乘)。

\(4.\)常用NTT模数:

以下模数的共同\(g=3189\)

\(p=r\times 2^k+1\) \(k\) \(g\)
\(104857601\) \(22\) \(3\)
\(167772161\) \(25\) \(3\)
\(469762049\) \(26\) \(3\)
\(950009857\) \(21\) \(7\)
\(998244353\) \(23\) \(3\)
\(1004535809\) \(21\) \(3\)
\(2013265921\) \(27\) \(31\)
\(2281701377\) \(27\) \(3\)
\(3221225473\) \(30\) \(5\)

拆系数FFT(CFFT)实现任模FFT:

\(1.\)实现原理:运用实数FFT不取模做乘法,然后取模回归到整数。但是由于误差较大(值域是\(10^{23}\)),我们令\(t=\sqrt{m}\)把系数\(a_i=k_it+b_i\),对\(k_i,t_i\)交叉做四遍卷积,求出答案按系数贡献取模加入。

\(2.\)可按合并DFT的方法优化DFT次数。

\(bluestein\)算法实现任长FFT:

\(m\)不是\(2\)的幂次的时候,我们从式子入手:
\[A_k=\sum_{j=0}^{m-1}a_jw_m^{jk}\]
\[A_k=\sum_{j=0}^{m-1}a_jw_m^{\frac{j^2+k^2-{(k-j)}^2}{2}}\]
\[A_k=w_m^{\frac {k^2} 2}\sum_{j=0}^{m-1}a_jw_m^{\frac{j^2} 2}w_m^{\frac{-{(k-j)}^2}{2}}\]
\(X_i=a_iw_m^{\frac {i^2} 2},Y_i=w_m^{\frac{-i^2}2}\)
\[A_k=w_m^{\frac {k^2} 2}\sum_{j=0}^{m-1}X_jY_{k-j}\]

喜闻乐见的模板:

三模NTT模板(注意:不可以MTT回来,因为系数会取模)

namespace MTT{
    typedef long long LL;
    int n, m;
    LL p, mod;
    const LL p1 = 998244353;
    const LL p2 = 1004535809;
    const LL p3 = 104857601;
    const int g = 3189;
    LL a[300005], b[300005], c[300005], cpa[300005], cpb[300005];
    LL c3[300005], c1[300005], c2[300005];
    LL qpow(LL a, LL b, LL mod) {
        LL ans = 1;
        while(b) {
            if(b & 1)   ans = ans * a % mod;
            a = a * a % mod;
            b >>= 1;
        }
        return ans;
    }
    const LL inv12 = qpow(p1, p2 - 2, p2);
    const LL inv123 = qpow(p1 * p2 % p3, p3 - 2, p3);
    struct p_l_e{
        int wz[300005];
        void MTT(LL *a, int N, int op) {
            for(int i = 0; i < N; i++)
                if(i < wz[i]) swap(a[i], a[wz[i]]);
            for(int le = 2; le <= N; le <<= 1) {
                int mid = le >> 1;
                LL wn = qpow(g, (mod - 1) / le, mod);
                if(op == -1) wn = qpow(wn, mod - 2, mod);
                for(int i = 0; i < N ;i += le) {
                    LL w = 1, x, y;
                    for(int j = 0; j < mid; j++) {
                        x = a[i + j];
                        y = a[i + j + mid] * w % mod;
                        a[i + j] = (x + y) % mod;
                        a[i + j + mid] = (x - y + mod) % mod;
                        w = w * wn % mod;
                    }
                }
            }
        }
        void mult(LL *a, LL *b, LL *c, int M) {
            int N = 1, len = 0;
            while(N < M) N <<= 1, len++;
            for(int i = 0; i < N; i++)
                wz[i] = (wz[i >> 1] >> 1) | ((i & 1) << (len - 1));
            MTT(a, N, 1); MTT(b, N, 1);
            for(int i = 0; i < N; i++)  c[i] = a[i] * b[i] % mod;
            MTT(c, N, -1);
            LL t = qpow(N, mod - 2, mod);
            for(int i = 0; i < N; i++)  c[i] = c[i] * t % mod;
        }

    }PLE;
    LL CRT(LL c1, LL c2, LL c3) {
        LL x = (c1 + p1 * ((c2 - c1 + p2) % p2 * inv12 % p2));
        LL y = (x % p + p1 * p2 % p * ((c3 - x % p3 + p3) % p3 * inv123 % p3) % p) % p;
        return y;
    }
    void merge(LL *c1, LL *c2, LL *c3, LL *c, int N) {
        for(int i = 0; i < N; i++)
            c[i] = CRT(c1[i], c2[i], c3[i]);
        return;
    }
    void main() {
        scanf("%d%d%lld", &n, &m, &p); n++; m++;
        for(int i = 0; i < n; i++)  scanf("%lld", &a[i]);
        for(int i = 0; i < m; i++)  scanf("%lld", &b[i]);
        mod = p1; memcpy(cpa, a, sizeof(a)); memcpy(cpb, b, sizeof(b)); PLE.mult(cpa, cpb, c1, n + m - 1);
        mod = p2; memcpy(cpa, a, sizeof(a)); memcpy(cpb, b, sizeof(b)); PLE.mult(cpa, cpb, c2, n + m - 1);
        mod = p3; memcpy(cpa, a, sizeof(a)); memcpy(cpb, b, sizeof(b)); PLE.mult(cpa, cpb, c3, n + m - 1);
        merge(c1, c2, c3, c, n + m - 1);
        for(int i = 0; i < n + m - 1; i++)  printf("%lld ", (c[i] % p + p) % p);
        return;
    }
}

拆系数FFT模板(注意:相同系数的两项可以合并一起IDFT。采用共轭优化法,只进行四次DFT)

namespace CFFT{
    typedef long long LL;
    int n, m, p ,sqrp; 
    int a[300005], b[300005];
    const long double pi = acos(-1);
    struct cp{
        long double x, y;
        cp() {x = y = 0;}
        cp(long double X,long double Y) {x = X; y = Y; }
        cp conj() {return (cp) {x, -y};}
    }ka[300005], kb[300005], ta[300005], tb[300005], kk[300005], kt[300005], tt[300005], c[300005], I(0, 1), d[300005];
     
    cp operator+ (const cp &a, const cp &b) {return (cp){a.x + b.x, a.y + b.y}; }
    cp operator- (const cp &a, const cp &b) {return (cp){a.x - b.x, a.y - b.y}; }
    cp operator* (const cp &a, const cp &b) {return (cp){a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x};}
    cp operator* (const cp &a, long double b) {return (cp){a.x * b, a.y * b};}
    cp operator/ (const cp &a, long double b) {return (cp){a.x / b, a.y / b};}  
    struct p_l_e{
        int wz[300005];
        void FFT(cp *a, int N, int op){
            for(int i = 0; i < N; i++)
                if(i < wz[i])   swap(a[i], a[wz[i]]);
            for(int le = 2; le <= N; le <<= 1){
                int mid = le >> 1;
                cp x, y, w, wn = (cp){cos(op * 2 * pi / le), sin(op * 2 * pi / le)};
                for(int i = 0; i < N; i += le){
                    w = (cp){1, 0};
                    for(int j = 0; j < mid; j++){
                        x = a[i + j];
                        y = a[i + j + mid] * w;
                        a[i + j] = x + y;
                        a[i + j + mid] = x - y;
                        w = w * wn;
                    }
                }
            } 
        }
        void D_FFT(cp *a, cp *b, int N, int op){
            for(int i = 0; i < N; i++)  d[i] = a[i] + I * b[i];
            FFT(d, N, op);
            d[N] = d[0];
            if(op == 1){
                for(int i = 0; i < N; i++){
                    a[i] = (d[i] + d[N - i].conj()) / 2;
                    b[i] = I * (-1) * (d[i] - d[N - i].conj()) / 2;
                }
            } else {
                for(int i = 0; i < N; i++){
                    a[i] = cp(d[i].x, 0);
                    b[i] = cp(d[i].y, 0);
                }
            }
            d[N] = cp(0, 0);
        }
        void mult(int *a, int *b, int M){
            int N = 1, len = 0;
            while(N < M) N <<= 1, len++;
            for(int i = 0; i < N; i++)
                wz[i] = (wz[i >> 1] >> 1) | ((i & 1) << (len - 1));
            for(int i = 0; i < N; i++){
                ka[i].x = a[i] >> 15;
                kb[i].x = b[i] >> 15;
                ta[i].x = a[i] & 32767;
                tb[i].x = b[i] & 32767;
            }
            D_FFT(ta, ka, N, 1); D_FFT(tb, kb, N, 1);
            for(int i = 0; i < N; i++){
                kk[i] = ka[i] * kb[i];
                kt[i] = ka[i] * tb[i] + ta[i] * kb[i];
                tt[i] = ta[i] * tb[i];
            }
            D_FFT(tt, kk, N, -1); FFT(kt, N, -1);
            for(int i = 0; i < N; i++){
                tt[i] = tt[i] / N;
                kt[i] = kt[i] / N;
                kk[i] = kk[i] / N;
            }
        }
    }PLE;
    void main() {
        scanf("%d%d%d", &n, &m, &p); n++; m++;
        for(int i = 0; i < n; i++)  scanf("%d", &a[i]),a[i] = a[i] % p;
        for(int i = 0; i < m; i++)  scanf("%d", &b[i]),b[i] = b[i] % p;
        PLE.mult(a, b, n + m - 1);
        for(int i = 0; i < n + m - 1; i++)
            printf("%lld ",(((((LL)round(kk[i].x)) % p) << 30) + ((((LL)round(kt[i].x)) % p) << 15) + ((LL)round(tt[i].x)) % p) % p);
    }
}

\(blue\_stein\)模板:

struct polynie {
    CP getw(int m, int k, int op) {
        return CP(cos(2 * pi * k / m), op * sin(2 * pi * k / m));
    }
    int wz[MAXN];
    CP A[MAXN], B[MAXN], C[MAXN];
    void FFT(CP *a, int N, int op) {
        rop(i, 0, N) if(i < wz[i]) swap(a[i], a[wz[i]]);
        for(int l = 2; l <= N; l <<= 1) {
            int mid = l >> 1;
            CP x, y, w, wn = CP(cos(pi / mid), sin(op * pi / mid));
            for(int i = 0; i < N; i += l) {
                w = CP(1, 0);
                rop(j, 0, mid) {
                    x = a[i + j];
                    y = w * a[i + j + mid];
                    a[i + j] = x + y;
                    a[i + j + mid] = x - y;
                    w = w * wn;
                }
            }
        }
    }
    void mult(CP *a, CP *b, CP *c, int M) {
        int N = 1, len = 0;
        while(N < M) N <<= 1, len++;
        rop(i, 0, N) wz[i] = (wz[i >> 1] >> 1) | ((i & 1) << (len - 1));
        FFT(a, N, 1); FFT(b, N, 1);
        rop(i, 0, N) c[i] = a[i] * b[i];
        FFT(c, N, -1);
        rop(i, 0, N) c[i].x = c[i].x / N, c[i].y = c[i].y / N;
    }
    void blue_stein(CP *a, int M, int op) {
        int M2 = M << 1;
        memset(A, 0, sizeof(A));
        memset(B, 0, sizeof(B));
        memset(C, 0, sizeof(C));
        rop(i, 0, M) A[i] = a[i] * getw(M2, 1ll * i * i % M2, op);
        rop(i, 0, M2) B[i] = getw(M2, 1ll * (i - M) * (i - M) % M2, -op);
        mult(A, B, C, M2 + M - 1);
        rop(i, 0, M) a[i] = C[i + M] * getw(M2, 1ll * i * i % M2, op);
        if(op == -1) rop(i, 0, M) a[i].x = a[i].x / M, a[i].y = a[i].y / M;
    }
}PLE;

\(\color{red}{\text{多项式全集之三 多项式求逆与除法:}}\)

多项式求逆:

\(1.\)问题描述:

已知\(F(x)\),且\(F(x)G(x)\equiv 1 (mod~x^n)\),求\(G(x)\)

\(2.\)推导过程:


\[B(x)\equiv F(x)^{-1}(mod~x^{\lceil \frac n 2 \rceil})\]
由于
\[G(x)\equiv F(x)^{-1} (mod~x^n)\]
所以
\[G(x)\equiv F(x)^{-1} (mod~x^{\lceil \frac n 2 \rceil})\]
那么
\[G(x)\equiv B(x)(mod~x^{\lceil \frac n 2 \rceil})\]
\[G(x)-B(x)\equiv 0(mod~x^{\lceil \frac n 2 \rceil})\]
两边平方,得:

由于\([G(x)-B(x)]^2\)的第\(k<n\)项为
\[\sum_{i=0}^k[g_ix^i-b_ix^i][g_{k-i}x^{k-i}-b_{k-i}x^{k-i}]\]
\(i,k-i\)一定有一项\(<\frac n 2\),所以
\[[G(x)-B(x)]^2\equiv 0 (mod~x^n)\]
\[G^2(x)+B^2(x)-2G(x)B(x)\equiv 0(mod~x^n)\]
两边同乘\(A(x)\),得:
\[A(x)G^2(x)+A(x)B^2(x)-2A(x)G(x)B(x)\equiv 0 (mod~x^n)\]
\[G(x)+A(x)B^2(x)-2B(x)\equiv 0 (mod~x^n)\]
\[G(x)\equiv 2B(x)-A(x)B^2(x)(mod~x^n)\]
\[G(x)\equiv B(x)[2-A(x)B(x)](mod~x^n)\]

多项式除法:

\(1.\)问题描述:

已知一个\(n\)次多项式\(A(x)\),一个\(m\)次多项式\(B(x)\),且\(A(x)=B(x)C(x)+D(x)\),求\(n-m\)次多项式\(C(x)\)\(<m\)次多项式\(D(x)\)

\(2.\)推导过程:

喜闻乐见的模板:

namespace INV{
    typedef long long LL;
    int n, a[300005], b[300005];
    const int mod = 998244353;
    const int g = 3189;
    int qpow(int a, int b){
        int ans = 1;
        while(b){
            if(b & 1)   ans = 1ll * ans * a % mod;
            a = 1ll * a * a % mod;
            b >>= 1;
        }
        return ans;
    }
    struct p_l_e{
        int wz[300005], i_c[300005];
        void NTT(int *a, int N, int op){
            for(int i = 0; i < N; i++)
                if(i < wz[i]) swap(a[i], a[wz[i]]);
            for(int le = 2; le <= N; le <<= 1){
                int mid = le >> 1, wn = qpow(g, (mod - 1) / le);
                if(op == -1) wn = qpow(wn, mod - 2);
                for(int i = 0; i < N; i += le){
                    LL w = 1; int x, y;
                    for(int j = 0; j < mid; j++){
                        x = a[i + j];
                        y = w * a[i + j + mid] % mod;
                        a[i + j] = (x + y) % mod;
                        a[i + j + mid] = (x - y + mod) % mod;
                        w = w * wn % mod;
                    }
                }
            }
        }
        int init(int M){
            int N = 1, len = 0;
            while(N < M) N <<= 1, len++;    
            for(int i = 0; i < N; i++)
                wz[i] = (wz[i >> 1] >> 1) | ((i & 1) << (len - 1));
            return N;
        }
        void INV(int *a, int *b, int deg){
            if(deg == 1){b[0] = qpow(a[0], mod - 2); return;}
            INV(a, b, (deg + 1) >> 1);
            int N = init(deg + deg - 1);
            for(int i = 0; i < deg; i++) i_c[i] = a[i];
            for(int i = deg; i < N; i++) i_c[i] = 0;
            NTT(b, N, 1);NTT(i_c, N, 1);
            for(int i = 0; i < N; i++) b[i] = 1ll * b[i] * (2 - 1ll * b[i] * i_c[i] % mod + mod) % mod;
            NTT(b, N, -1);
            int t = qpow(N, mod - 2);
            for(int i = 0; i < N; i++) b[i] = 1ll * b[i] * t % mod;
            for(int i = deg; i < N; i++) b[i] = 0;
        }
    }PLE;
    
    void main(){
        scanf("%d", &n);
        for(int i = 0; i < n; i++)  scanf("%d", &a[i]);
        PLE.INV(a, b, n);
        for(int i = 0; i < n; i++)  printf("%d ",b[i]);
    }
}

\(\color{red}{\text{多项式全集之四 多项式ln与exp:}}\)

\(\color{red}{\text{多项式全集之五 多项式快速幂的两种方法:}}\)

\(\color{red}{\text{多项式全集之六 多项式快速插值与多点求值:}}\)

\(\color{red}{\text{多项式全集之七 拉格朗日插值:}}\)

猜你喜欢

转载自www.cnblogs.com/Smeow/p/10580854.html
今日推荐