4.特征选择方法:

    特征选择是指选择获得相应模型和算法最好性能的特征集,工程上常用的方法有以下:
    
    a.计算每一个特征与响应变量的相关性:工程上常用的手段有计算皮尔逊系数和互信息系数,
    皮尔逊系数只能衡量线性相关性而互信息系数能够很好地度量各种相关性,但是计算相对复杂一些,
    好在很多toolkit里边都包含了这个工具(如sklearn的MINE),得到相关性之后就可以排序选择特征了.(其实就是计算输出关于输入的导数,如果某个特征很大程度上影响了输出,那么该特征就会比较重要)。
    
    b. 构建单个特征的模型,通过模型的准确性为特征排序,借此来选择特征,
    另外,记得JMLR'03上有一篇论文介绍了一种基于决策树的特征选择方法,本质上是等价的。当选择到了目标特征之后,再用来训练最终的模型;
    
    c. 通过L1正则项来选择特征:L1正则方法具有稀疏解的特性,因此天然具备特征选择的特性,但是要注意,
    L1没有选到的特征不代表不重要,原因是两个具有高相关性的特征可能只保留了一个,如果要确定哪个特征重要应再通过L2正则方法交叉检验;
    
    d. 训练能够对特征打分的预选模型:RandomForest和Logistic Regression等都能对模型的特征打分,通过打分获得相关性后再训练最终模型;
    
    e. 通过特征组合后再来选择特征:如对用户id和用户特征最组合来获得较大的特征集再来选择特征,这种做法在推荐系统和广告系统中比较常见,
    这也是所谓亿级甚至十亿级特征的主要来源,原因是用户数据比较稀疏,组合特征能够同时兼顾全局模型和个性化模型,这个问题有机会可以展开讲。
    
    f. 通过深度学习来进行特征选择:目前这种手段正在随着深度学习的流行而成为一种手段,尤其是在计算机视觉领域,原因是深度学习具有自动学习特征的能力,
    这也是深度学习又叫unsupervisedfeature learning的原因。从深度学习模型中选择某一神经层的特征后就可以用来进行最终目标模型的训练了

猜你喜欢

转载自blog.csdn.net/Wgb_0206/article/details/88620427