线程池和锁的深度化

Java中的线程池是运用场景最多的并发框架,几乎所有需要异步或并发执行任务的程序
都可以使用线程池。在开发过程中,合理地使用线程池能够带来3个好处。
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。
第三:提高线程的可管理性。线程是稀缺资源,如果无限制地创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一分配、调优和监控。但是,要做到合理利用线程池,必须对其实现原理了如指掌。
线程池是为突然大量爆发的线程设计的,通过有限的几个固定线程为大量的操作服务,减少了创建和销毁线程所需的时间,从而提高效率。
如果一个线程的时间非常长,就没必要用线程池了(不是不能作长时间操作,而是不宜。),况且我们还不能控制线程池中线程的开始、挂起、和中止。
线程池的分类
ThreadPoolExecutor
Executor框架的最顶层实现是ThreadPoolExecutor类,Executors工厂类中提供的newScheduledThreadPool、newFixedThreadPool、newCachedThreadPool方法其实也只是ThreadPoolExecutor的构造函数参数不同而已。通过传入不同的参数,就可以构造出适用于不同应用场景下的线程池,那么它的底层原理是怎样实现的呢,这篇就来介绍下ThreadPoolExecutor线程池的运行过程。
线程池四种创建方式
Java通过Executors(jdk1.5并发包)提供四种线程池,分别为:
newCachedThreadPool创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。
newFixedThreadPool 创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。
newScheduledThreadPool 创建一个定长线程池,支持定时及周期性任务执行。
newSingleThreadExecutor 创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。
newCachedThreadPool

// 无限大小线程池 jvm自动回收
		ExecutorService newCachedThreadPool = Executors.newCachedThreadPool();
		for (int i = 0; i < 10; i++) {
			final int temp = i;
			newCachedThreadPool.execute(new Runnable() {

				@Override
				public void run() {
					try {
						Thread.sleep(100);
					} catch (Exception e) {
						// TODO: handle exception
					}
					System.out.println(Thread.currentThread().getName() + ",i:" + temp);

				}
			});
		}

总结: 线程池为无限大,当执行第二个任务时第一个任务已经完成,会复用执行第一个任务的线程,而不用每次新建线程。
newFixedThreadPool

ExecutorService newFixedThreadPool = Executors.newFixedThreadPool(5);
		for (int i = 0; i < 10; i++) {
			final int temp = i;
			newFixedThreadPool.execute(new Runnable() {

				@Override
				public void run() {
				try{
					Thread.sleep(2000);
					System.out.println(Thread.currentThread().getId() + ",i:" + temp);
				}catch(Exception e){
					e.printStack();
				}
				

				}
			});
		}

总结:因为线程池大小为5,每个任务输出temp后sleep 2秒,所以每两秒打印5个数字。
定长线程池的大小最好根据系统资源进行设置。如Runtime.getRuntime().availableProcessors();
newScheduledThreadPool

ScheduledExecutorService newScheduledThreadPool = Executors.newScheduledThreadPool(5);
		for (int i = 0; i < 10; i++) {
			final int temp = i;
			newScheduledThreadPool.schedule(new Runnable() {
				public void run() {
					System.out.println("i:" + temp);
				}
			}, 3, TimeUnit.SECONDS);
}

表示延迟3秒执行。
newSingleThreadExecutor
创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。示例代码如下:

ExecutorService newSingleThreadExecutor = Executors.newSingleThreadExecutor();
		for (int i = 0; i < 10; i++) {
			final int index = i;
			newSingleThreadExecutor.execute(new Runnable() {

				@Override
				public void run() {
					System.out.println("index:" + index);
					try {
						Thread.sleep(200);
					} catch (Exception e) {
						// TODO: handle exception
					}
				}
			});
		}

线程池原理剖析
提交一个任务到线程池中,线程池的处理流程如下:
1、判断线程池里的核心线程是否都在执行任务,如果不是(核心线程空闲或者还有核心线程没有被创建)则创建一个新的工作线程来执行任务。如果核心线程都在执行任务,则进入下个流程。
2、线程池判断工作队列是否已满,如果工作队列没有满,则将新提交的任务存储在这个工作队列里。如果工作队列满了,则进入下个流程。
3、判断线程池里的线程是否都处于工作状态,如果没有,则创建一个新的工作线程来执行任务。如果已经满了,则交给饱和策略来处理这个任务。
在这里插入图片描述
Java锁的深度化
悲观锁与乐观锁
悲观锁:悲观锁悲观的认为每一次操作都会造成更新丢失问题,在每次查询时加上排他锁。
每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会block直到它拿到锁。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。
Select * from xxx for update;
乐观锁:乐观锁会乐观的认为每次查询都不会造成更新丢失,利用版本字段控制
重入锁
锁作为并发共享数据,保证一致性的工具,在JAVA平台有多种实现(如 synchronized 和 ReentrantLock等等 ) 。这些已经写好提供的锁为我们开发提供了便利。
重入锁,也叫做递归锁,指的是同一线程 外层函数获得锁之后 ,内层递归函数仍然有获取该锁的代码,但不受影响。
在JAVA环境下 ReentrantLock 和synchronized 都是 可重入锁

public class Test implements Runnable {
	public  synchronized void get() {
		System.out.println("name:" + Thread.currentThread().getName() + " get();");
		set();
	}

	public synchronized  void set() {
		System.out.println("name:" + Thread.currentThread().getName() + " set();");
	}

	@Override

	public void run() {
		get();
	}

	public static void main(String[] args) {
		Test ss = new Test();
		new Thread(ss).start();
		new Thread(ss).start();
		new Thread(ss).start();
		new Thread(ss).start();
	}
}
public class Test02 extends Thread {
	ReentrantLock lock = new ReentrantLock();
	public void get() {
		lock.lock();
		System.out.println(Thread.currentThread().getId());
		set();
		lock.unlock();
	}
	public void set() {
		lock.lock();
		System.out.println(Thread.currentThread().getId());
		lock.unlock();
	}
	@Override
	public void run() {
		get();
	}
	public static void main(String[] args) {
		Test ss = new Test();
		new Thread(ss).start();
		new Thread(ss).start();
		new Thread(ss).start();
	}

}

读写锁
相比Java中的锁(Locks in Java)里Lock实现,读写锁更复杂一些。假设你的程序中涉及到对一些共享资源的读和写操作,且写操作没有读操作那么频繁。在没有写操作的时候,两个线程同时读一个资源没有任何问题,所以应该允许多个线程能在同时读取共享资源。但是如果有一个线程想去写这些共享资源,就不应该再有其它线程对该资源进行读或写(译者注:也就是说:读-读能共存,读-写不能共存,写-写不能共存)。这就需要一个读/写锁来解决这个问题。Java5在java.util.concurrent包中已经包含了读写锁。尽管如此,我们还是应该了解其实现背后的原理。

public class Cache {
	static Map<String, Object> map = new HashMap<String, Object>();
	static ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
	static Lock r = rwl.readLock();
	static Lock w = rwl.writeLock();

	// 获取一个key对应的value
	public static final Object get(String key) {
		r.lock();
		try {
			System.out.println("正在做读的操作,key:" + key + " 开始");
			Thread.sleep(100);
			Object object = map.get(key);
			System.out.println("正在做读的操作,key:" + key + " 结束");
			System.out.println();
			return object;
		} catch (InterruptedException e) {

		} finally {
			r.unlock();
		}
		return key;
	}

	// 设置key对应的value,并返回旧有的value
	public static final Object put(String key, Object value) {
		w.lock();
		try {

			System.out.println("正在做写的操作,key:" + key + ",value:" + value + "开始.");
			Thread.sleep(100);
			Object object = map.put(key, value);
			System.out.println("正在做写的操作,key:" + key + ",value:" + value + "结束.");
			System.out.println();
			return object;
		} catch (InterruptedException e) {

		} finally {
			w.unlock();
		}
		return value;
	}

	// 清空所有的内容
	public static final void clear() {
		w.lock();
		try {
			map.clear();
		} finally {
			w.unlock();
		}
	}

	public static void main(String[] args) {
		new Thread(new Runnable() {

			@Override
			public void run() {
				for (int i = 0; i < 10; i++) {
					Cache.put(i + "", i + "");
				}

			}
		}).start();
		new Thread(new Runnable() {

			@Override
			public void run() {
				for (int i = 0; i < 10; i++) {
					Cache.get(i + "");
				}

			}
		}).start();
	}
}

CAS无锁机制
(1)与锁相比,使用比较交换(下文简称CAS)会使程序看起来更加复杂一些。但由于其非阻塞性,它对死锁问题天生免疫,并且,线程间的相互影响也远远比基于锁的方式要小。更为重要的是,使用无锁的方式完全没有锁竞争带来的系统开销,也没有线程间频繁调度带来的开销,因此,它要比基于锁的方式拥有更优越的性能。
(2)无锁的好处:
第一,在高并发的情况下,它比有锁的程序拥有更好的性能;
第二,它天生就是死锁免疫的。
就凭借这两个优势,就值得我们冒险尝试使用无锁的并发。
(3)CAS算法的过程是这样:它包含三个参数CAS(V,E,N): V表示要更新的变量,E表示预期值,N表示新值。仅当V值等于E值时,才会将V的值设为N,如果V值和E值不同,则说明已经有其他线程做了更新,则当前线程什么都不做。最后,CAS返回当前V的真实值。
(4)CAS操作是抱着乐观的态度进行的,它总是认为自己可以成功完成操作。当多个线程同时使用CAS操作一个变量时,只有一个会胜出,并成功更新,其余均会失败。失败的线程不会被挂起,仅是被告知失败,并且允许再次尝试,当然也允许失败的线程放弃操作。基于这样的原理,CAS操作即使没有锁,也可以发现其他线程对当前线程的干扰,并进行恰当的处理。
(5)简单地说,CAS需要你额外给出一个期望值,也就是你认为这个变量现在应该是什么样子的。如果变量不是你想象的那样,那说明它已经被别人修改过了。你就重新读取,再次尝试修改就好了。
(6)在硬件层面,大部分的现代处理器都已经支持原子化的CAS指令。在JDK 5.0以后,虚拟机便可以使用这个指令来实现并发操作和并发数据结构,并且,这种操作在虚拟机中可以说是无处不在。

public final int incrementAndGet() {  
	    for (;;) {  
	        //获取当前值  
	        int current = get();  
	        //设置期望值  
	        int next = current + 1;  
	        //调用Native方法compareAndSet,执行CAS操作  
	        if (compareAndSet(current, next))  
	            //成功后才会返回期望值,否则无线循环  
	            return next;  
	    }  
	}  

自旋锁
是指当一个线程在获取锁的时候,如果锁已经被其它线程获取,那么该线程将循环等待,然后不断的判断锁是否能够被成功获取,直到获取到锁才会退出循环。

获取锁的线程一直处于活跃状态,但是并没有执行任何有效的任务,使用这种锁会造成busy-waiting。

它是为实现保护共享资源而提出一种锁机制。其实,自旋锁与互斥锁比较类似,它们都是为了解决对某项资源的互斥使用。无论是互斥锁,还是自旋锁,在任何时刻,最多只能有一个保持者,也就说,在任何时刻最多只能有一个执行单元获得锁。但是两者在调度机制上略有不同。对于互斥锁,如果资源已经被占用,资源申请者只能进入睡眠状态。但是自旋锁不会引起调用者睡眠,如果自旋锁已经被别的执行单元保持,调用者就一直循环在那里看是否该自旋锁的保持者已经释放了锁,”自旋”一词就是因此而得名。

public class SpinLock {
    private AtomicReference<Thread> cas = new AtomicReference<Thread>();
    public void lock() {
        Thread current = Thread.currentThread();
        // 利用CAS
        while (!cas.compareAndSet(null, current)) {
            // DO nothing
        }
    }
    public void unlock() {
        Thread current = Thread.currentThread();
        cas.compareAndSet(current, null);
    }
}

猜你喜欢

转载自blog.csdn.net/qq_39411208/article/details/88085190
今日推荐