线程池与锁优化

线程池:

  线程池的好处:线程使应用能更加充分利用CPU、内存、网络、IO等系统资源。线程的创建需要开辟虚拟机栈、本地方法栈、程序计数器等线程私有的内存空间。

在线程销毁时需要回收这些系统资源。因此频繁的创建和销毁线程会浪费大量的系统资源,增加并发编程风险。另外,在服务器负载过大的时候,如何让新的线程等待或者

友好地拒绝服务?这些都是线程本身无法解决的。所以需要通过线程池协调多个线程,并实现类似主次线程隔离、定时执行、周期执行等任务。线程池的作用包括:

  1):利用线程池管理并复用线程、控制最大并发数等

  2):实现任务线程队列缓存策略和拒绝机制

  3):实现某些与时间相关的功能,如定时执行、周期执行

  4):隔离线程环境。通过配置两个或多个线程池,将一台服务器上较慢的服务和其他服务隔离开,避免各服务线程相互影响。

参数说明:
1、corePoolSize  表示常驻核心线程数,如果大于0,则即使执行完任务,线程也不会被销毁。因此这个值的设置非常关键,设置过小会导致线程
  频繁地创建和销毁,设置过大会造成浪费资源
2、maximumPoolSize  表示线程池能够容纳的最大线程数。必须大于或者等于1。如果待执行的线程数大于此值,需要缓存在队列中等待
3、keepAliveTime  表示线程池中的线程空闲时间,当空闲时间达到keepAliveTime值时,线程会被销毁,避免浪费内存和句柄资源。在默认情况下,当线程池
  中的线程数大于corePoolSize时,keepAliveTime才起作用,达到空闲时间的线程,直到只剩下corePoolSize个线程为止。但是当ThreadPoolExecutor的
  allowCoreThreadTimeOut设置为true时(默认false),核心线程超时后也会被回收。(一般设置60s)
4、TimeUnit  表示时间单位,keepAliveTime的时间单位通常是TimeUnit.SECONDS
5、workQueue  表示缓存队列。
6、threadFactory  表示线程工厂。它用来生产一组相同任务的线程。线程池的命名是通过给threadFactory增加组名前缀来实现的。在用jstack分析时,就可以知道
  线程任务是由哪个线程工厂产生的。
7、handler   表示执行拒绝策略的对象。当超过workQueue的缓存上限的时候,就可以通过该策略处理请求,这是一种简单的限流保护。友好的拒绝策略可以是如下
  三种:
    1):保存到数据库进行削峰填谷。在空闲时再取出来执行
    2):转向某个提示页面
    3):打印日志

总结使用线程池需要注意以下几点:

1、合理设置各类参数,应根据实际业务场景来设置合理的工作线程数

2、线程资源必须通过线程池提供,不允许在应用中自行显式创建线程

3、创建线程或线程池请指定有意义的线程名称,方便出错时回溯

4、线程池不允许使用Executors,而是通过ThreadPoolExecutor的方式来创建,这样的处理方式能更加明确线程池的运行规则,规避资源耗尽的风险。

如创建线程池例子:

复制代码
    /**
     * 创建一个用于发送邮件的线程池,核心线程数为1,最大线程数为5,线程空闲时间为60s,拒绝策略为打印日志
     */
    private static final ThreadPoolExecutor executor = new ThreadPoolExecutor(1, 5, 60, TimeUnit.SECONDS, new LinkedBlockingQueue<Runnable>(50), new CustomThreadFactory("redeemSendMail"), new RejectedExecutionHandler() {
        @Override
        public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
            // 只打印日志,什么都不做
            LOGGER.error("Task{},rejected from{}", r.toString(), executor.toString());
        }
    });
复制代码

锁优化

自旋锁和自适应锁:

  互斥同步对性能最大的影响是阻塞的实现,挂起线程和恢复线程的操作都需要从用户态转到核心态中去完成。这些操作给操作系统的并发性能带来了很大的压力。同时,在

很多应用上,共享数据的锁定状态只会持续很短的一段时间,为了这段时间去挂起和恢复线程并不值得。如果物理机器上有一个以上的处理器,能让两个或以上的线程同时并行

执行,我们就可以让后面请求锁的那个线程”稍等一下“,但不放弃处理器的执行时间,看看持有锁的线程是否很快就会释放锁,为了让线程等待,我们只需要让线程执行一个

忙循环,即自旋,这项技术就是所谓的自旋锁。

  自旋锁在1.6之后默认开启,自旋等待不能代替阻塞,虽然避免了线程切换的开销(挂起唤醒,用户态转核心态),但是还是会占用处理器的时间,因此如果锁被占用的时间

很短,那么自旋等待的效果就会非常好,如果锁占用的时间很长,那么自旋的线程只会白白消耗处理器资源,带来性能浪费。因此自旋等待的时间要有一定的限度,如果自旋超

过了限定的次数仍然没有成功获得锁,那就应当用传统的方式去挂起线程了。自旋的次数默认是10次。

  1.6引入了自适应的自旋锁。自适应意味着自旋的时间不再固定了,而是由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定。

锁消除:

  锁消除是指在虚拟机即时编译器在运行时,对一些代码上要求同步,但是被检测到不可能存在共享数据竞争的锁进行消除。锁消除的主要判定依据来源于逃逸分析的数据支

持,如果判断在一段代码中,堆上的所有数据都不会逃逸出去被其他线程访问到,那就可以把它们当作栈上数据对待,认为它们是线程私有的,同步加锁就无需进行。

锁粗化:

  原则上,我们在编写代码的时候,总是推荐将同步块的作用范围限制得尽量小——只在共享数据的实际作用域中才进行同步,这样是为了使得需要同步的操作数量尽可能变

小(减少锁时间),如果存在锁竞争,那等待锁的线程也能尽快拿到锁。但是如果一系列的连续操作都对同一个对象反复加锁和解锁,甚至加锁操作是出现在循环体中的,那即

使没有线程竞争,频繁地进行互斥同步操作也会导致不必要的性能消耗。如StringBuffer类的append()方法就是这种情况,每个append()方法都对同一个对象加锁,且append()

可能连续出现多次。

    @Override
    public synchronized StringBuffer append(String str) {
        toStringCache = null;
        super.append(str);
        return this;
    }

如果虚拟机探测到有这样一串零碎的操作都对同一个对象加锁,将会把锁同步的范围扩展(粗化)到整个操作序列的外部,如多个append()的话就会扩展到第一个append()操作

之前直至最后一个append()操作之后,这样只需要加锁一次就可以了。

轻量级锁:

  1.6引入的新型锁机制,轻量级是相对使用操作系统互斥量来实现的传统锁而言的,传统的锁机制就称为重量级锁。轻量级锁并不能替代重量级锁,它的本意是在没有多线

程竞争的前提下,减少传统的重量级锁使用操作系统互斥量产生的性能消耗。

  要理解轻量级锁以及偏向锁的原理和运作过程,必须了解JVM的对象(对象头部分)的内部布局。HotSpot JVM的对象头(Object Header)分为两部分信息,第一部分用

来存储对象自身的运行时数据,如哈希码(hashCode)、GC分代年龄、锁标志位等。官方称为Mark Word,它是实现轻量级锁和偏向锁的关键。另外一部分用于存储指向方法

区对象类型的指针,如果是数组的话,还会有一个额外的部分用于存储数组的长度。

  Mark Word对象头在不同状态下的标识位存储内容如下:

  

  轻量级锁的执行过程:在代码进入同步块的时候,如果此同步对象没有被锁定(锁标识位为01的时候),虚拟机首先将在当前线程的栈帧中建立一个名为锁记录(Lock Record)

的空间,用于存储锁对象目前的Mark Word拷贝,加了一个前缀Displaced,即Displaced Mark Word。然后虚拟机将使用CAS操作尝试将对象的Mark Word更新为指向Lock Record

的指针。如果这个更新动作成功了,那么这个线程就拥有了该对象的锁,并且对象Mark Word的锁标识位修改为00,即表示此对象处于轻量级锁定状态。如果这个更新操作失败了

,虚拟机首先会检查对象的Mark Word是否指向当前线程的栈帧,如果是说明当前线程已经拥有了这个对象的锁,那就可以直接进入同步块继续执行,否则说明这个锁对象已经被

其他线程抢占了。如果有两条以上的线程争用同一个锁,那轻量级锁就不再有效,要膨胀为重量级锁,锁标志的状态值变为10,Mark Word中存储的就是指向重量级锁(互斥量)

的指针,后面等待的线程也要进入阻塞状态。

  可以看到轻量级锁的加锁过程是通过CAS来实现的,同样,解锁过程也是通过CAS操作来进行的,如果对象的Mark Word仍然指向着线程的锁记录,那就用CAS操作把对象当前

的Mark Word和线程中复制的Displaced Mark Word替换回来,如果替换成功,整个同步过程就完成了。如果替换失败,说明有其他线程尝试获取该锁,那就要在释放锁的同时,唤

醒被挂起的线程。

  轻量级锁能提升程序同步性能的依据是“对于绝大部分的锁,在整个同步周期内都是不存在竞争的”,这是一个经验数据。如果没有竞争,轻量级锁使用CAS操作避免了使用互斥

量的开销,如果存在锁竞争,那么除了互斥量的开销外,还额外发生了CAS操作,因此在有竞争的情况下,轻量级锁会比传统的重量级锁更慢。

偏向锁:

  1.6引入的一项锁优化,目的是消除数据在无竞争情况下的同步原语,进一步提高程序的运行性能。如果说轻量级锁是在无竞争的情况下使用CAS操作去消除同步使用的互斥

量,那偏向锁就是在无竞争情况下把整个同步都消除掉,并且连CAS操作都不做了。

  偏向锁的“偏”,就是偏心的“偏”,它的意思是这个锁会偏向于第一个获得它的线程,如果在接下来的执行过程中,该锁没有被其他的线程获取,则持有偏向锁的线程将永

远不需要再进行同步。

  如果虚拟机开启了偏向锁,1.6默认开启,那么当锁对象第一次被线程获取的时候,虚拟机会把对象头中的标志为设为01,即偏向模式。同时使用CAS操作把获取到这个锁的

线程的ID记录在对象的Mark Word之中,如果CAS操作成功,持有偏向锁的线程以后每次进入这个锁相关的同步块时,虚拟机都可以不再进行任何同步操作。当有另外一个线程

去尝试获取这个锁时,偏向模式宣告结束。根据锁对象目前是否出于被锁定的状态,撤销偏向(Revoke Bias)后恢复到未锁定(标志位为01)或轻量级锁定(标志位为00)的状

态,后续的同步操作就按轻量级锁的过程来执行。

  偏向锁可以提高带有同步但无竞争的程序性能。但是它并不一定总是对程序有利,如果程序中大多数的锁总是被多个不同的线程访问,那么偏向模式就是多余的。

线程同步:

  即当有一个线程在对内存进行操作时,其他线程都不可以对这个内存进行操作,一直等待直到该线程完成操作,其他线程才能对该内存进行操作。

  在多个线程对同一变量进行写操作时,如果操作没有原子性,就可能产生脏数据。所谓原子性,是指不可分割的一系列操作指令,在执行完毕前不能被任何其他操作中断,那么全部执行,要么全部不执行。如果每个线程对共享变量的修改都是原子操作,就不存在线程同步问题。

  i++操作就不具备原子性,它需要分成三部ILOAD-->IINC-->ISTORE。

  CAS(Compare And Swap)操作具备原子性

  实现线程同步的方式有很多,比如同步方法、锁、阻塞队列等。

Volatile

  happen-before:先从happen-before了解线程操作的内存可见性。把happen before定义为方法hb(a,b)表示a happen before b。如果hb(a,b)且hb(b,c),那么能够推导出hb(a,c)。

即如果a在b之前发生,那么a对内存的操作b是可见的,b之后的操作c也是可见的。

  指令优化:计算机并不会根据代码顺序按部就班地执行相关指令。CPU处理信息时会进行指令优化,分析哪些取数据可以合并进行,哪些存数据动作可以合并进行。CPU拜访

一次遥远的内存,一定会到处看看,是否可以存取合并,以提高执行效率。

  happen-before是时钟顺序的先后,并不能保证线程交互的可见性。那什么是可见性呢?可见性是指某线程修改共享变量的指令对其他线程来说都是可见的,它反应的

是指令执行的实时透明度。先从Java内存模型说起:每个线程都有独占的内存区域,如操作栈,本地变量表等。线程本地内存保存了引用变量在堆内存中的副本。线程对

变量的所有操作都在本地内存区域中进行,执行结束后再同步到堆内存(主内存)中去。在这个操作过程中,该线程对副本的操作,对于其他线程都是不可见的。

volatile的英文本义是挥发、不稳定的,延伸意义为敏感的。当使用volatile修饰变量时,意味着任何对此变量的操作都会在主内存中进行,不会产生副本,以保证共享

变量的可见性,局部阻止了指令重排的发生。它只是轻量级的线程操作可见方式,并非同步方式,如果是多写场景,一定会产生线程安全问题。如果是一写多读的并发场景,

使用volatile修饰变量则非常合适。volatile一写多读最典型的应用是CopyOnWriteArrayList,它在修改数据时会把整个集合的数据全部复制出来,对写操作加锁,修改完成

后,再用setArray()把array指向新的集合。使用volatile可以使线程尽快地感知array的修改,不进行指令重排,操作后即对其他线程可见。

源码如下:

复制代码
public class CopyOnWriteArrayList<E>
    implements List<E>, RandomAccess, Cloneable, java.io.Serializable {
 /** The array, accessed only via getArray/setArray. */ 真正存储元素的数组
    private transient volatile Object[] array;
final void setArray(Object[] a) { array = a; } }
复制代码

在实际的业务中,如果不确定共享变量是否会被多个线程并发写,保险的做法是使用同步代码块来实现线程同步。另外,因为所有的操作都需要同步给内存变量

所以volatile一定会使线程的执行速度变量,故要慎重定义和使用volatile属性。

  

  信号量同步

  信号量同步是指在不同的线程之间,通过传递同步信号量来协调线程执行的先后次序。基于时间维度的CountDownLatch和基于信号维度的Semaphore。

  CountDownLatch

复制代码
public class CountDownLatch {
    /**
     * Synchronization control For CountDownLatch.
     * Uses AQS state to represent count.
     */
    private static final class Sync extends AbstractQueuedSynchronizer {
        private static final long serialVersionUID = 4982264981922014374L;

        Sync(int count) {
            setState(count);
        }

        int getCount() {
            return getState();
        }

        protected int tryAcquireShared(int acquires) {
            return (getState() == 0) ? 1 : -1;
        }

        protected boolean tryReleaseShared(int releases) {
            // Decrement count; signal when transition to zero
            for (;;) {
                int c = getState();
                if (c == 0)
                    return false;
                int nextc = c-1;
                if (compareAndSetState(c, nextc))
                    return nextc == 0;
            }
        }
    }

    private final Sync sync;
...
}
复制代码

可以看到其和ReentrantLock类似,都是依赖AQS中的可见性变量state。

  CountDownLatch:倒数计数器,比如日常开发中经常会遇到需要在主线程中开启多线程去并行执行任务,并且主线程需要等待所有子线程执行完毕后再进行汇总的场景,它的内部提供

了一个计数器,再构造闭锁时必须指定计数器的初始值(state),且计数器的初始值必须大于0。另外它还提供了一个countDown方法来操作计数器的值,(在子线程中)每调用一次

countDown方法计数器会减1,直到计数器的值减为0(类似于获取到了锁),所有因调用await方法而阻塞的线程都会被唤醒。

  

  Semaphore:CountDownLatch是基于计数的同步类。在实际编码中,可能需要处理基于空闲信号的同步情况。

复制代码
public class Semaphore implements java.io.Serializable {
    private static final long serialVersionUID = -3222578661600680210L;
    /** All mechanics via AbstractQueuedSynchronizer subclass */
    private final Sync sync;

    /**
     * Synchronization implementation for semaphore.  Uses AQS state
     * to represent permits. Subclassed into fair and nonfair
     * versions.
     */
    abstract static class Sync extends AbstractQueuedSynchronizer {
        private static final long serialVersionUID = 1192457210091910933L;

        Sync(int permits) {
            setState(permits);
        }

        final int getPermits() {
            return getState();
        }
    ...
    }
  // 默认使用非公平锁 static final class NonfairSync extends Sync { private static final long serialVersionUID = -2694183684443567898L; NonfairSync(int permits) { super(permits); } protected int tryAcquireShared(int acquires) { return nonfairTryAcquireShared(acquires); } }
  // 构造方法 public Semaphore(int permits) { sync = new NonfairSync(permits); } ... }
复制代码

使用Semaphore的构造方法指定同时处理的线程的数量,只有在调用Semaphore的acquire()成功后,才可以往下执行,完成后执行release()释放持有的信号量,下一个线程就可以马上获取这个

空闲信号量进入执行。

Semaphore的release()和CountDownLatch的countDown方法相同。

acquire()方法在直到有一个信号量空闲时,才会执行后续的代码,否则,将一直阻塞。可以理解为Semaphore允许有创建对象时在构造中指定的锁的数量,当锁有空闲时,线程就可以拿到

锁,否则将一直等待。拿到锁的线程执行完毕后释放锁。

countDown和release都是使state减1。

end

猜你喜欢

转载自www.cnblogs.com/yangyongjie/p/12422946.html