[转载]全景视频拼接(二)--OpenCV源码解析

转载自 [https://blog.csdn.net/App_12062011/article/details/52438357]

本文参考:http://blog.csdn.net/skeeee/article/details/19480693,做了一定修改和补充。

一、stitching_detail程序运行流程

  1.命令行调用程序,输入源图像以及程序的参数

  2.特征点检测,判断是使用surf还是orb,默认是surf。

  3.对图像的特征点进行匹配,使用最近邻方法,将最优的匹配的置信度保存下来,同时保存两幅图像匹配特征点的单应性矩阵。

  4.删除置信度比较低的图像间的匹配,利用并查集算法,确保匹配图像的拼接集。

 5.对所有拼接集图像进行相机参数粗略估计,然后求出旋转矩阵。

 6.使用光束平均法进一步精准的估计出旋转矩阵。

 7.波形校正,水平或者垂直

 8.原始图到指定全景图的投影拼接。

 9.融合,多频段融合,光照补偿。

二、stitching_detail程序接口介绍

img1 img2 img3 输入图像

 --preview  以预览模式运行程序,比正常模式要快,但输出图像分辨率低,拼接的分辨率compose_megapix 设置为0.6

 --try_gpu  (yes|no)  是否使用GPU(图形处理器),默认为no

/* 运动估计参数 */

--work_megapix <--work_megapix <float>> 图像匹配的分辨率大小,图像的面积尺寸变为work_megapix*100000,默认为0.6

--features (surf|orb) 选择surf或者orb算法进行特征点计算,默认为surf

--match_conf <float> 特征点检测置信等级,最近邻匹配距离与次近邻匹配距离的比值,surf默认为0.65,orb默认为0.3

--conf_thresh <float> 两幅图来自同一全景图的置信度,默认为1.0

--ba (reproj|ray) 光束平均法的误差函数选择,默认是ray方法

--ba_refine_mask (mask)  ---------------

--wave_correct (no|horiz|vert) 波形校验 水平,垂直或者没有 默认是horiz

 --save_graph <file_name> 将匹配的图形以点的形式保存到文件中, Nm代表匹配的数量,NI代表正确匹配的数量,C表示置信度

/图像融合参数:/

--warp (plane|cylindrical|spherical|fisheye|stereographic|compressedPlaneA2B1|compressedPlaneA1.5B1|compressedPlanePortraitA2B1

|compressedPlanePortraitA1.5B1|paniniA2B1|paniniA1.5B1|paniniPortraitA2B1|paniniPortraitA1.5B1|mercator|transverseMercator)

选择融合的平面,默认是球形

--seam_megapix <float> 拼接缝分辨率压缩因子(非压缩系数) 默认是0.1 ------------

--seam (no|voronoi|gc_color|gc_colorgrad) 拼接缝隙估计方法 默认是gc_color

--compose_megapix <float> 拼接分辨率,默认为-1

--expos_comp (no|gain|gain_blocks) 光照补偿方法,默认是gain_blocks

--blend (no|feather|multiband) 融合方法,默认是多频段融合

--blend_strength <float> 融合强度,0-100.默认是5.

–output <result_img> 输出图像的文件名,默认是result,jpg

命令使用实例,以及程序运行时的提示:

三、程序代码分析

1.参数读入

 程序参数读入分析,将程序运行是输入的参数以及需要拼接的图像读入内存,检查图像是否多于2张。

int retval = parseCmdArgs(argc, argv);
if (retval)
    return retval;

// Check if have enough images
int num_images = static_cast<int>(img_names.size());
if (num_images < 2)
{
    LOGLN("Need more images");
    return -1;
}
  2.特征点检测

  判断选择是surf还是orb特征点检测(默认是surf)以及对图像进行预处理(尺寸缩放),然后计算每幅图形的特征点,以及特征点描述子

  2.1 计算work_scale,将图像resize到面积在work_megapix*10^6以下,(work_megapix 默认是0.6)

work_scale = min(1.0, sqrt(work_megapix * 1e6 / full_img.size().area()));
resize(full_img, img, Size(), work_scale, work_scale);
图像大小是740830,面积大于610^5,所以计算出work_scale = 0.98,然后对图像resize。

 2.2 计算seam_scale,也是根据图像的面积小于seam_megapix*10^6,(seam_megapix 默认是0.1),seam_work_aspect目前还没用到

seam_scale = min(1.0, sqrt(seam_megapix * 1e6 / full_img.size().area()));
seam_work_aspect = seam_scale / work_scale; //seam_megapix = 0.1 seam_work_aspect = 0.69

2.3 计算图像特征点,以及计算特征点描述子,并将img_idx设置为i。

(*finder)(img, features[i]);//matcher.cpp 348
features[i].img_idx = i;
特征点描述的结构体定义如下:

struct detail::ImageFeatures
Structure containing image keypoints and descriptors.
struct CV_EXPORTS ImageFeatures
{
	int img_idx;// 
	Size img_size;
	std::vector<KeyPoint> keypoints;
	Mat descriptors;
};

 2.4 将源图像resize到seam_megapix*10^6,并存入image[]中

    resize(full_img, img, Size(), seam_scale, seam_scale);
    images[i] = img.clone();
3.图像匹配

   对任意两副图形进行特征点匹配,然后使用查并集法,将图片的匹配关系找出,并删除那些不属于同一全景图的图片。

3.1 使用最近邻和次近邻匹配,对任意两幅图进行特征点匹配。

vector<MatchesInfo> pairwise_matches;//Structure containing information about matches between two images. 
BestOf2NearestMatcher matcher(try_gpu, match_conf);//最近邻和次近邻法
matcher(features, pairwise_matches);//对每两个图片进行matcher,20-》400 matchers.cpp 502
介绍一下BestOf2NearestMatcher 函数:

  //Features matcher which finds two best matches for each feature and leaves the best one only if the ratio between descriptor distances is greater than the threshold match_conf.
 detail::BestOf2NearestMatcher::BestOf2NearestMatcher(bool try_use_gpu=false,float match_conf=0.3f,
                                                     intnum_matches_thresh1=6, int num_matches_thresh2=6)
 Parameters:	try_use_gpu – Should try to use GPU or not
		match_conf – Match distances ration threshold
		num_matches_thresh1 – Minimum number of matches required for the 2D projective
		transform estimation used in the inliers classification step
		num_matches_thresh2 – Minimum number of matches required for the 2D projective
		transform re-estimation on inliers
 函数的定义(只是设置一下参数,属于构造函数):

BestOf2NearestMatcher::BestOf2NearestMatcher(bool try_use_gpu, float match_conf, int num_matches_thresh1, int num_matches_thresh2)
{
#ifdef HAVE_OPENCV_GPU
if (try_use_gpu && getCudaEnabledDeviceCount() > 0)
impl_ = new GpuMatcher(match_conf);
else
#else
(void)try_use_gpu;
#endif
impl_ = new CpuMatcher(match_conf);

is_thread_safe_ = impl_->isThreadSafe();
num_matches_thresh1_ = num_matches_thresh1;
num_matches_thresh2_ = num_matches_thresh2;

}
以及MatchesInfo的结构体定义:

Structure containing information about matches between two images. It’s assumed that there is a homography between those images.
struct CV_EXPORTS MatchesInfo
{
MatchesInfo();
MatchesInfo(const MatchesInfo &other);
const MatchesInfo& operator =(const MatchesInfo &other);
int src_img_idx, dst_img_idx; // Images indices (optional)
std::vector matches;
std::vector inliers_mask; // Geometrically consistent matches mask
int num_inliers; // Number of geometrically consistent matches
Mat H; // Estimated homography
double confidence; // Confidence two images are from the same panorama
};
求出图像匹配的结果如下(具体匹配参见sift特征点匹配),任意两幅图都进行匹配(3*3=9),其中1-》2和2-》1只计算了一次,以1-》2为准(2-1直接采用对称方式,且H求逆),:

   3.2 根据任意两幅图匹配的置信度,将所有置信度高于conf_thresh(默认是1.0)的图像合并到一个全集中。

   我们通过函数的参数 save_graph打印匹配结果如下(我稍微修改了一下输出):

“outimage101.jpg” – “outimage102.jpg”[label=“Nm=866, Ni=637, C=2.37864”];
“outimage101.jpg” – “outimage103.jpg”[label=“Nm=165, Ni=59, C=1.02609”];
“outimage102.jpg” – “outimage103.jpg”[label=“Nm=460, Ni=260, C=1.78082”];
Nm代表匹配的数量,NI代表正确匹配的数量,C表示置信度

vector<int> indices = leaveBiggestComponent(features, pairwise_matches, conf_thresh);//将置信度高于门限的所有匹配合并到一个集合中
vector<Mat> img_subset;
vector<string> img_names_subset;
vector<Size> full_img_sizes_subset;
for (size_t i = 0; i < indices.size(); ++i)
{
    img_names_subset.push_back(img_names[indices[i]]);
    img_subset.push_back(images[indices[i]]);
    full_img_sizes_subset.push_back(full_img_sizes[indices[i]]);
}

images = img_subset;
img_names = img_names_subset;
full_img_sizes = full_img_sizes_subset;
   4.根据单应性矩阵粗略估计出相机参数(焦距)

    4.1 焦距参数的估计

    根据前面求出的任意两幅图的匹配,我们根据两幅图的单应性矩阵H,求出符合条件的f,(4副图,16个匹配,求出8个符合条件的f),然后求出f的均值或者中值当成所有图形的粗略估计的f。

estimateFocal(features, pairwise_matches, focals);
函数的主要源码如下:

for (int i = 0; i < num_images; ++i)
{
    for (int j = 0; j < num_images; ++j)
    {
        const MatchesInfo &m = pairwise_matches[i*num_images + j];
        if (m.H.empty())
            continue;
        double f0, f1;
        bool f0ok, f1ok;
		focalsFromHomography(m.H, f0, f1, f0ok, f1ok);//Tries to estimate focal lengths from the given homography  79
		//under the assumption that the camera undergoes rotations around its centre only.
        if (f0ok && f1ok)
            all_focals.push_back(sqrt(f0 * f1));
    }
}

  其中函数focalsFromHomography的定义如下:

Tries to estimate focal lengths from the given homography
under the assumption that the camera undergoes rotations around its centre only.
Parameters
H – Homography.
f0 – Estimated focal length along X axis.
f1 – Estimated focal length along Y axis.
f0_ok – True, if f0 was estimated successfully, false otherwise.
f1_ok – True, if f1 was estimated successfully, false otherwise.
函数的源码(注意:这里根据H计算F的原理,一直没找到,知道的朋友可以指点下):

void focalsFromHomography(const Mat& H, double &f0, double &f1, bool &f0_ok, bool &f1_ok)
{
CV_Assert(H.type() == CV_64F && H.size() == Size(3, 3));//Checks a condition at runtime and throws exception if it fails

const double* h = reinterpret_cast<const double*>(H.data);//强制类型转换

double d1, d2; // Denominators
double v1, v2; // Focal squares value candidates

//具体的计算过程有点看不懂啊
f1_ok = true;
d1 = h[6] * h[7];
d2 = (h[7] - h[6]) * (h[7] + h[6]);
v1 = -(h[0] * h[1] + h[3] * h[4]) / d1;
v2 = (h[0] * h[0] + h[3] * h[3] - h[1] * h[1] - h[4] * h[4]) / d2;
if (v1 < v2) std::swap(v1, v2);
if (v1 > 0 && v2 > 0) f1 = sqrt(std::abs(d1) > std::abs(d2) ? v1 : v2);
else if (v1 > 0) f1 = sqrt(v1);
else f1_ok = false;

f0_ok = true;
d1 = h[0] * h[3] + h[1] * h[4];
d2 = h[0] * h[0] + h[1] * h[1] - h[3] * h[3] - h[4] * h[4];
v1 = -h[2] * h[5] / d1;
v2 = (h[5] * h[5] - h[2] * h[2]) / d2;
if (v1 < v2) std::swap(v1, v2);
if (v1 > 0 && v2 > 0) f0 = sqrt(std::abs(d1) > std::abs(d2) ? v1 : v2);
else if (v1 > 0) f0 = sqrt(v1);
else f0_ok = false;

}
求出的焦距有8个

  求出的焦距取中值或者平均值,然后就是所有图片的焦距。

  并构建camera参数,将矩阵写入camera:

    cameras.assign(num_images, CameraParams());
    for (int i = 0; i < num_images; ++i)
        cameras[i].focal = focals[i];
 4.2 根据匹配的内点构建最大生成树,然后广度优先搜索求出根节点,并求出camera的R矩阵,K矩阵以及光轴中心

  camera其他参数:

 aspect = 1.0,ppx,ppy目前等于0,最后会赋值成图像中心点的。

  K矩阵的值:

Mat CameraParams::K() const
{
Mat_ k = Mat::eye(3, 3, CV_64F);
k(0,0) = focal; k(0,2) = ppx;
k(1,1) = focal * aspect; k(1,2) = ppy;
return k;
}
R矩阵的值:

void operator ()(const GraphEdge &edge)
{
    int pair_idx = edge.from * num_images + edge.to;

    Mat_<double> K_from = Mat::eye(3, 3, CV_64F);
    K_from(0,0) = cameras[edge.from].focal;
    K_from(1,1) = cameras[edge.from].focal * cameras[edge.from].aspect;
    K_from(0,2) = cameras[edge.from].ppx;
    K_from(0,2) = cameras[edge.from].ppy;

    Mat_<double> K_to = Mat::eye(3, 3, CV_64F);
    K_to(0,0) = cameras[edge.to].focal;
    K_to(1,1) = cameras[edge.to].focal * cameras[edge.to].aspect;
    K_to(0,2) = cameras[edge.to].ppx;
    K_to(0,2) = cameras[edge.to].ppy;

    Mat R = K_from.inv() * pairwise_matches[pair_idx].H.inv() * K_to;
    cameras[edge.to].R = cameras[edge.from].R * R;
}
     光轴中心的值

for (int i = 0; i < num_images; ++i)
{
    cameras[i].ppx += 0.5 * features[i].img_size.width;
    cameras[i].ppy += 0.5 * features[i].img_size.height;
}
  5.使用Bundle Adjustment方法对所有图片进行相机参数校正

  Bundle Adjustment(光束法平差)算法主要是解决所有相机参数的联合。这是全景拼接必须的一步,因为多个成对的单应性矩阵合成全景图时,会忽略全局的限制,造成累积误差。因此每一个图像都要加上光束法平差值,使图像被初始化成相同的旋转和焦距长度。

  光束法平差的目标函数是一个具有鲁棒性的映射误差的平方和函数。即每一个特征点都要映射到其他的图像中,计算出使误差的平方和最小的相机参数。具体的推导过程可以参见Automatic Panoramic Image Stitching using Invariant Features.pdf的第五章。

 opencv中误差描述函数有两种如下:(opencv默认是BundleAdjusterRay ):

BundleAdjusterReproj // BundleAdjusterBase(7, 2)//最小投影误差平方和
Implementation of the camera parameters refinement algorithm which minimizes sum of the reprojection error squares

BundleAdjusterRay //  BundleAdjusterBase(4, 3)//最小特征点与相机中心点的距离和
Implementation of the camera parameters refinement algorithm which minimizes sum of the distances between the
rays passing through the camera center and a feature.


  5.1 首先计算cam_params_的值:

setUpInitialCameraParams(cameras);
  函数主要源码:

cam_params_.create(num_images_ * 4, 1, CV_64F);
SVD svd;//奇异值分解
for (int i = 0; i < num_images_; ++i)
{
    cam_params_.at<double>(i * 4, 0) = cameras[i].focal;

    svd(cameras[i].R, SVD::FULL_UV);
    Mat R = svd.u * svd.vt;
    if (determinant(R) < 0)
        R *= -1;

    Mat rvec;
    Rodrigues(R, rvec);
    CV_Assert(rvec.type() == CV_32F);
    cam_params_.at<double>(i * 4 + 1, 0) = rvec.at<float>(0, 0);
    cam_params_.at<double>(i * 4 + 2, 0) = rvec.at<float>(1, 0);
    cam_params_.at<double>(i * 4 + 3, 0) = rvec.at<float>(2, 0);
}
  计算cam_params_的值,先初始化cam_params(num_images_*4,1,CV_64F);

  cam_params_[i*4+0] =  cameras[i].focal;

  cam_params_后面3个值,是cameras[i].R先经过奇异值分解,然后对u*vt进行Rodrigues运算,得到的rvec第一行3个值赋给cam_params_。

 奇异值分解的定义:

在矩阵M的奇异值分解中 M = UΣV*
·U的列(columns)组成一套对M的正交"输入"或"分析"的基向量。这些向量是MM的特征向量。
·V的列(columns)组成一套对M的正交"输出"的基向量。这些向量是M
M的特征向量。
·Σ对角线上的元素是奇异值,可视为是在输入与输出间进行的标量的"膨胀控制"。这些是MM及MM的奇异值,并与U和V的行向量相对应。
5.2 删除置信度小于门限的匹配对

// Leave only consistent image pairs
edges_.clear();
for (int i = 0; i < num_images_ - 1; ++i)
{
    for (int j = i + 1; j < num_images_; ++j)
    {
        const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j];
        if (matches_info.confidence > conf_thresh_)
            edges_.push_back(make_pair(i, j));
    }
}
   5.3 使用LM算法计算camera参数。

   首先初始化LM的参数(具体理论还没有看懂)

//计算所有内点之和
for (size_t i = 0; i < edges_.size(); ++i)
total_num_matches_ += static_cast(pairwise_matches[edges_[i].first * num_images_ +
edges_[i].second].num_inliers);

CvLevMarq solver(num_images_ * num_params_per_cam_,
                 total_num_matches_ * num_errs_per_measurement_,
                 term_criteria_);

Mat err, jac;
CvMat matParams = cam_params_;
cvCopy(&matParams, solver.param);

int iter = 0;
for(;;)//类似于while(1),但是比while(1)效率高
{
    const CvMat* _param = 0;
    CvMat* _jac = 0;
    CvMat* _err = 0;

    bool proceed = solver.update(_param, _jac, _err);

    cvCopy(_param, &matParams);

    if (!proceed || !_err)
        break;

    if (_jac)
    {
        calcJacobian(jac); //构造雅阁比行列式
        CvMat tmp = jac;
        cvCopy(&tmp, _jac);
    }

    if (_err)
    {
        calcError(err);//计算err
        LOG_CHAT(".");
        iter++;
        CvMat tmp = err;
        cvCopy(&tmp, _err);
    }
}
   计算camera

obtainRefinedCameraParams(cameras);//Gets the refined camera parameters.
函数源代码:

void BundleAdjusterRay::obtainRefinedCameraParams(vector &cameras) const
{
for (int i = 0; i < num_images_; ++i)
{
cameras[i].focal = cam_params_.at(i * 4, 0);

    Mat rvec(3, 1, CV_64F);
    rvec.at<double>(0, 0) = cam_params_.at<double>(i * 4 + 1, 0);
    rvec.at<double>(1, 0) = cam_params_.at<double>(i * 4 + 2, 0);
    rvec.at<double>(2, 0) = cam_params_.at<double>(i * 4 + 3, 0);
    Rodrigues(rvec, cameras[i].R);

    Mat tmp;
    cameras[i].R.convertTo(tmp, CV_32F);
    cameras[i].R = tmp;
}

}
求出根节点,然后归一化旋转矩阵R

// Normalize motion to center image
Graph span_tree;
vector<int> span_tree_centers;
findMaxSpanningTree(num_images_, pairwise_matches, span_tree, span_tree_centers);
Mat R_inv = cameras[span_tree_centers[0]].R.inv();
for (int i = 0; i < num_images_; ++i)
    cameras[i].R = R_inv * cameras[i].R;
 6 波形校正

 前面几节把相机旋转矩阵计算出来,但是还有一个因素需要考虑,就是由于拍摄者拍摄图片的时候不一定是水平的,轻微的倾斜会导致全景图像出现飞机曲线,因此我们要对图像进行波形校正,主要是寻找每幅图形的“上升向量”(up_vector),使他校正成。

波形校正的效果图

     opencv实现的源码如下(实际就是求解特征值,计算出U向量,再将up向量乘在相机参数上(水平旋转或者垂直旋转))

vector rmats;
for (size_t i = 0; i < cameras.size(); ++i)
rmats.push_back(cameras[i].R);
waveCorrect(rmats, wave_correct);//Tries to make panorama more horizontal (or vertical).
for (size_t i = 0; i < cameras.size(); ++i)
cameras[i].R = rmats[i];
其中waveCorrect(rmats, wave_correct)源码如下:

void waveCorrect(vector &rmats, WaveCorrectKind kind)
{
LOGLN(“Wave correcting…”);
#if ENABLE_LOG
int64 t = getTickCount();
#endif

Mat moment = Mat::zeros(3, 3, CV_32F);
for (size_t i = 0; i < rmats.size(); ++i)
{
    Mat col = rmats[i].col(0);
    moment += col * col.t();//相机R矩阵第一列转置相乘然后相加
}
Mat eigen_vals, eigen_vecs;
eigen(moment, eigen_vals, eigen_vecs);//Calculates eigenvalues and eigenvectors of a symmetric matrix.

Mat rg1;
if (kind == WAVE_CORRECT_HORIZ)
    rg1 = eigen_vecs.row(2).t();//如果是水平校正,去特征向量的第三行
else if (kind == WAVE_CORRECT_VERT)
    rg1 = eigen_vecs.row(0).t();//如果是垂直校正,特征向量第一行
else
    CV_Error(CV_StsBadArg, "unsupported kind of wave correction");

Mat img_k = Mat::zeros(3, 1, CV_32F);
for (size_t i = 0; i < rmats.size(); ++i)
    img_k += rmats[i].col(2);//R函数第3列相加
Mat rg0 = rg1.cross(img_k);//rg1与img_k向量积
rg0 /= norm(rg0);//归一化?

Mat rg2 = rg0.cross(rg1);

double conf = 0;
if (kind == WAVE_CORRECT_HORIZ)
{
    for (size_t i = 0; i < rmats.size(); ++i)
        conf += rg0.dot(rmats[i].col(0));//Computes a dot-product of two vectors.数量积
    if (conf < 0)
    {
        rg0 *= -1;
        rg1 *= -1;
    }
}
else if (kind == WAVE_CORRECT_VERT)
{
    for (size_t i = 0; i < rmats.size(); ++i)
        conf -= rg1.dot(rmats[i].col(0));
    if (conf < 0)
    {
        rg0 *= -1;
        rg1 *= -1;
    }
}

Mat R = Mat::zeros(3, 3, CV_32F);
Mat tmp = R.row(0);
Mat(rg0.t()).copyTo(tmp);
tmp = R.row(1);
Mat(rg1.t()).copyTo(tmp);
tmp = R.row(2);
Mat(rg2.t()).copyTo(tmp);

for (size_t i = 0; i < rmats.size(); ++i)
    rmats[i] = R * rmats[i];

LOGLN("Wave correcting, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");

}
7.单应性矩阵变换

  由图像匹配,Bundle Adjustment算法以及波形校验,求出了图像的相机参数以及旋转矩阵,接下来就对图形进行单应性矩阵变换,亮度的增量补偿以及多波段融合(图像金字塔)。首先介绍的就是单应性矩阵变换:

  源图像的点(x,y,z=1),图像的旋转矩阵R,图像的相机参数矩阵K,经过变换后的同一坐标(x_,y_,z_),然后映射到球形坐标(u,v,w),他们之间的关系如下:

void SphericalProjector::mapForward(float x, float y, float &u, float &v)
{
float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

u = scale * atan2f(x_, z_);
float w = y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_);
v = scale * (static_cast<float>(CV_PI) - acosf(w == w ? w : 0));

}

   根据映射公式,对图像的上下左右四个边界求映射后的坐标,然后确定变换后图像的左上角和右上角的坐标,

   如果是球形拼接,则需要再加上判断(要保证前向投影后确保有效数据的ROI,因为投影后会存在无数据的现象。):

float tl_uf = static_cast<float>(dst_tl.x);
float tl_vf = static_cast<float>(dst_tl.y);
float br_uf = static_cast<float>(dst_br.x);
float br_vf = static_cast<float>(dst_br.y);

float x = projector_.rinv[1];
float y = projector_.rinv[4];
float z = projector_.rinv[7];
if (y > 0.f)
{
    float x_ = (projector_.k[0] * x + projector_.k[1] * y) / z + projector_.k[2];
    float y_ = projector_.k[4] * y / z + projector_.k[5];
    if (x_ > 0.f && x_ < src_size.width && y_ > 0.f && y_ < src_size.height)
    {
        tl_uf = min(tl_uf, 0.f); tl_vf = min(tl_vf, static_cast<float>(CV_PI * projector_.scale));
        br_uf = max(br_uf, 0.f); br_vf = max(br_vf, static_cast<float>(CV_PI * projector_.scale));
    }
}

x = projector_.rinv[1];
y = -projector_.rinv[4];
z = projector_.rinv[7];
if (y > 0.f)
{
    float x_ = (projector_.k[0] * x + projector_.k[1] * y) / z + projector_.k[2];
    float y_ = projector_.k[4] * y / z + projector_.k[5];
    if (x_ > 0.f && x_ < src_size.width && y_ > 0.f && y_ < src_size.height)
    {
        tl_uf = min(tl_uf, 0.f); tl_vf = min(tl_vf, static_cast<float>(0));
        br_uf = max(br_uf, 0.f); br_vf = max(br_vf, static_cast<float>(0));
    }
}
  然后利用反投影将图形反投影到变换的图像上,像素计算默认是二维线性插值。

 反投影的公式:

void SphericalProjector::mapBackward(float u, float v, float &x, float &y)
{
u /= scale;
v /= scale;

float sinv = sinf(static_cast<float>(CV_PI) - v);
float x_ = sinv * sinf(u);
float y_ = cosf(static_cast<float>(CV_PI) - v);
float z_ = sinv * cosf(u);

float z;
x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

if (z > 0) { x /= z; y /= z; }
else x = y = -1;

}
然后将反投影求出的x,y值写入Mat矩阵xmap和ymap中

xmap.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F);
ymap.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F);

float x, y;
for (int v = dst_tl.y; v <= dst_br.y; ++v)
{
    for (int u = dst_tl.x; u <= dst_br.x; ++u)
    {
        projector_.mapBackward(static_cast<float>(u), static_cast<float>(v), x, y);
        xmap.at<float>(v - dst_tl.y, u - dst_tl.x) = x;
        ymap.at<float>(v - dst_tl.y, u - dst_tl.x) = y;
    }
}

最后使用opencv自带的remap函数将图像重新绘制:

remap(src, dst, xmap, ymap, interp_mode, border_mode);//重映射,xmap,yamp分别是u,v反投影对应的x,y值,默认是双线性插值
补充一下全景图知识(http://www.360doc.com/content/14/0512/18/17164701_377013140.shtml)

全景图概述
每当一个平面图像映射到一个弯曲的表面就会发生图象投影,反之亦然,这中现象特别常见于全景摄影。例如地球的球面可以映射到一块平坦的纸张。由于在我们周围的整个视场的可以被认为是作为球体的表面(对于所有观测角度),我们需要一种能将球形投影到2-D平面以便照片打印的方法。

             窄视角                                                                宽视角

(网格基本是方的) (网格严重扭曲)

小的视角相对容易进行形变并投影到平坦的纸上。但是,当试图把一个球形图像映射到一个平面上,有些变形是不可避免的。因此,每一种类型的投影仅仅尝试避免一种类型的失真,这是以牺牲其他失真为代价的。随着视场角增大,观测弧(viewing arc)变得更弯曲,从而全景投影类型之间的差异变得更加显着。什么时候使用那一种投影,在很大程度上取决于每个投影应用。 在这里,我们集中介绍在几个最常用。

全景图的种类

Equirectangular: 将球形的经度和纬度坐标,直接到水平和垂直坐标的一格,这个网格的高度大约宽的两倍。因此从赤道到两极,横向拉伸不断加剧,南北两个极点被拉伸成了扁平的网格在整个上部和下部边缘。 Equirectangular可以现实整个水平和竖直的360全景。

圆柱投影: 类似equirectangular,只是随着目标接近南北两极,纵向也会拉伸,两极会发生无限的纵向拉伸(因此这个扁平网格的顶部和底部没有水平线) 。由于这个原因,柱面投影不太适合具有非常大的垂直视角的图像。柱面投影是传统摆动镜头全景胶片相机所提供的标准投影方式。其对于目标尺寸的保持比直线投影更准确,然而这样就将平行于观测者视线的直线渲染成了曲线。

直线投影:主要优点在于,它把三维空间中的所有直线映射成二维网格上的直线。这种投影类型是大多数普通广角镜头所希望的,所以这也许是我们最熟悉的投影方式。它的主要缺点是,随着视角增加,它会大大加剧透视效果,从而导致在图像的边缘的对象产生歪斜。因此,对于远大于120度的全景图,一般不推荐直线投影。

鱼眼投影: 目标是创建一个扁平的网格,到该网格中心的距离大约是实际可视角度的正比关系,这样产生的图像类似于观看一个镜面的金属球。这通常不作为全景摄影的拼接方式,但是当使用鱼眼镜头的时候,这种投影方式可以采纳。鱼眼投影的垂直和水平的角度限制为180度或更小,其得到的图像可以放在一个圆里。因此,当直线离图像网格中心越远,曲率就会越大。鱼眼镜头的相机在创建涵盖了整个视野的全景图时候很游泳,因为往往只需很少的照片,就可以创建全景。

摩卡托投影:和圆柱以及equirectangular投影关系非常密切。是这两种类型之间的一种折衷。和柱面投影相比,其产生更小的垂直拉伸和更大的可用的垂直角度,但是直线会更加弯曲。这个投影方式最有名的应用就是在平面地图上,我们也注意到,这个方法的另一种变形:横轴摩卡托投影,可以被用于生成很高的纵向全景图。

正弦投影:目标是保持所有网格区域的面积。如果用这种投影将地球变平,可以使用反变换再次形成一个面积和形状不变的球体。面积相等的特性是非常有用的,因为其保持了一致的水平和竖直分辨率。此投影类似的鱼眼和立体图投影,但它保持了纬线的完全水平。

立体图投影:和鱼眼投影类似,但它通过随着目标远离透视中心,逐渐进行拉伸的方法,保持了更好的透视感。这种透视增长的特性有点类似与直线投影的效果。

8.光照补偿

  图像拼接中,由于拍摄的图片有可能因为光圈或者光线的问题,导致相邻图片重叠区域出现亮度差,所以在拼接时就需要对图像进行亮度补偿,(opencv只对重叠区域进行了亮度补偿,这样会导致图像融合处虽然光照渐变,但是图像整体的光强没有柔和的过渡)。

  首先,将所有图像,mask矩阵进行分块(大小在32*32附近)。

for (int img_idx = 0; img_idx < num_images; ++img_idx)
{
Size bl_per_img((images[img_idx].cols + bl_width_ - 1) / bl_width_,
(images[img_idx].rows + bl_height_ - 1) / bl_height_);
int bl_width = (images[img_idx].cols + bl_per_img.width - 1) / bl_per_img.width;
int bl_height = (images[img_idx].rows + bl_per_img.height - 1) / bl_per_img.height;
bl_per_imgs[img_idx] = bl_per_img;
for (int by = 0; by < bl_per_img.height; ++by)
{
for (int bx = 0; bx < bl_per_img.width; ++bx)
{
Point bl_tl(bx * bl_width, by * bl_height);
Point bl_br(min(bl_tl.x + bl_width, images[img_idx].cols),
min(bl_tl.y + bl_height, images[img_idx].rows));

            block_corners.push_back(corners[img_idx] + bl_tl);
            block_images.push_back(images[img_idx](Rect(bl_tl, bl_br)));
            block_masks.push_back(make_pair(masks[img_idx].first(Rect(bl_tl, bl_br)),
                                            masks[img_idx].second));
        }
    }
}
  然后,求出任意两块图像的重叠区域的平均光强,

//计算每一块区域的光照均值sqrt(sqrt(R)+sqrt(G)+sqrt(B))
//光照均值是对称矩阵,所以一次循环计算两个光照值,(i,j),与(j,i)
for (int i = 0; i < num_images; ++i)
{
for (int j = i; j < num_images; ++j)
{
Rect roi;
//判断image[i]与image[j]是否有重叠部分
if (overlapRoi(corners[i], corners[j], images[i].size(), images[j].size(), roi))
{
subimg1 = images[i](Rect(roi.tl() - corners[i], roi.br() - corners[i]));
subimg2 = images[j](Rect(roi.tl() - corners[j], roi.br() - corners[j]));

            submask1 = masks[i].first(Rect(roi.tl() - corners[i], roi.br() - corners[i]));
            submask2 = masks[j].first(Rect(roi.tl() - corners[j], roi.br() - corners[j]));
            intersect = (submask1 == masks[i].second) & (submask2 == masks[j].second);

            N(i, j) = N(j, i) = max(1, countNonZero(intersect));

            double Isum1 = 0, Isum2 = 0;
            for (int y = 0; y < roi.height; ++y)
            {
                const Point3_<uchar>* r1 = subimg1.ptr<Point3_<uchar> >(y);
                const Point3_<uchar>* r2 = subimg2.ptr<Point3_<uchar> >(y);
                for (int x = 0; x < roi.width; ++x)
                {
                    if (intersect(y, x))
                    {
                        Isum1 += sqrt(static_cast<double>(sqr(r1[x].x) + sqr(r1[x].y) + sqr(r1[x].z)));
                        Isum2 += sqrt(static_cast<double>(sqr(r2[x].x) + sqr(r2[x].y) + sqr(r2[x].z)));
                    }
                }
            }
            I(i, j) = Isum1 / N(i, j);
            I(j, i) = Isum2 / N(i, j);
        }
    }
}
 建立方程,求出每个光强的调整系数

Mat_<double> A(num_images, num_images); A.setTo(0);
Mat_<double> b(num_images, 1); b.setTo(0);//beta*N(i,j)
for (int i = 0; i < num_images; ++i)
{
    for (int j = 0; j < num_images; ++j)
    {
        b(i, 0) += beta * N(i, j);
        A(i, i) += beta * N(i, j);
        if (j == i) continue;
        A(i, i) += 2 * alpha * I(i, j) * I(i, j) * N(i, j);
        A(i, j) -= 2 * alpha * I(i, j) * I(j, i) * N(i, j);
    }
}

solve(A, b, gains_);//求方程的解A*gains = B
    gains_原理分析:

num_images :表示图像分块的个数,零num_images = n

N矩阵,大小n*n,N(i,j)表示第i幅图像与第j幅图像重合的像素点数,N(i,j)=N(j,i)

I矩阵,大小n*n,I(i,j)与I(j,i)表示第i,j块区域重合部分的像素平均值,I(i,j)是重合区域中i快的平均亮度值,

参数alpha和beta,默认值是alpha=0.01,beta=100.

A矩阵,大小n*n,公式图片不全

b矩阵,大小n*1,

然后根据求解矩阵

gains_矩阵,大小1n,Agains = B

    然后将gains_进行线性滤波

Mat_<float> ker(1, 3);
ker(0,0) = 0.25; ker(0,1) = 0.5; ker(0,2) = 0.25;

int bl_idx = 0;
for (int img_idx = 0; img_idx < num_images; ++img_idx)
{
	Size bl_per_img = bl_per_imgs[img_idx];
	gain_maps_[img_idx].create(bl_per_img);

    for (int by = 0; by < bl_per_img.height; ++by)
        for (int bx = 0; bx < bl_per_img.width; ++bx, ++bl_idx)
            gain_maps_[img_idx](by, bx) = static_cast<float>(gains[bl_idx]);
	//用分解的核函数对图像做卷积。首先,图像的每一行与一维的核kernelX做卷积;然后,运算结果的每一列与一维的核kernelY做卷积
    sepFilter2D(gain_maps_[img_idx], gain_maps_[img_idx], CV_32F, ker, ker);
    sepFilter2D(gain_maps_[img_idx], gain_maps_[img_idx], CV_32F, ker, ker);
}
  然后构建一个gain_maps的三维矩阵,gain_main[图像的个数][图像分块的行数][图像分块的列数],然后对每一副图像的gain进行滤波。

9.Seam Estimation

 缝隙估计有6种方法,默认就是第三种方法,seam_find_type == "gc_color",该方法是利用最大流方法检测。

if (seam_find_type == “no”)
seam_finder = new detail::NoSeamFinder();//Stub seam estimator which does nothing.
else if (seam_find_type == “voronoi”)
seam_finder = new detail::VoronoiSeamFinder();//Voronoi diagram-based seam estimator. 泰森多边形缝隙估计
else if (seam_find_type == “gc_color”)
{
#ifdef HAVE_OPENCV_GPU
if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
seam_finder = new detail::GraphCutSeamFinderGpu(GraphCutSeamFinderBase::COST_COLOR);
else
#endif
seam_finder = new detail::GraphCutSeamFinder(GraphCutSeamFinderBase::COST_COLOR);//Minimum graph cut-based seam estimator
}
else if (seam_find_type == “gc_colorgrad”)
{
#ifdef HAVE_OPENCV_GPU
if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
seam_finder = new detail::GraphCutSeamFinderGpu(GraphCutSeamFinderBase::COST_COLOR_GRAD);
else
#endif
seam_finder = new detail::GraphCutSeamFinder(GraphCutSeamFinderBase::COST_COLOR_GRAD);
}
else if (seam_find_type == “dp_color”)
seam_finder = new detail::DpSeamFinder(DpSeamFinder::COLOR);
else if (seam_find_type == “dp_colorgrad”)
seam_finder = new detail::DpSeamFinder(DpSeamFinder::COLOR_GRAD);
if (seam_finder.empty())
{
cout << “Can’t create the following seam finder '” << seam_find_type << “’\n”;
return 1;
}
程序解读可参见:

http://blog.csdn.net/chlele0105/article/details/12624541

http://blog.csdn.net/zouxy09/article/details/8534954

http://blog.csdn.net/yangtrees/article/details/7930640

 10.多波段融合

  由于以前进行处理的图片都是以work_scale(3.1节有介绍)进行缩放的,所以图像的内参,corner(同一坐标后的顶点),mask(融合的掩码)都需要重新计算。以及将之前计算的光照增强的gain也要计算进去。

// Read image and resize it if necessary
full_img = imread(img_names[img_idx]);
if (!is_compose_scale_set)
{
if (compose_megapix > 0)
compose_scale = min(1.0, sqrt(compose_megapix * 1e6 / full_img.size().area()));
is_compose_scale_set = true;

        // Compute relative scales
        //compose_seam_aspect = compose_scale / seam_scale;
        compose_work_aspect = compose_scale / work_scale;

        // Update warped image scale
        warped_image_scale *= static_cast<float>(compose_work_aspect);
        warper = warper_creator->create(warped_image_scale);

        // Update corners and sizes
        for (int i = 0; i < num_images; ++i)
        {
            // Update intrinsics
            cameras[i].focal *= compose_work_aspect;
            cameras[i].ppx *= compose_work_aspect;
            cameras[i].ppy *= compose_work_aspect;

            // Update corner and size
            Size sz = full_img_sizes[i];
            if (std::abs(compose_scale - 1) > 1e-1)
            {
                sz.width = cvRound(full_img_sizes[i].width * compose_scale);//取整
                sz.height = cvRound(full_img_sizes[i].height * compose_scale);
            }

            Mat K;
            cameras[i].K().convertTo(K, CV_32F);
            Rect roi = warper->warpRoi(sz, K, cameras[i].R);//Returns Projected image minimum bounding box
            corners[i] = roi.tl();//! the top-left corner
            sizes[i] = roi.size();//! size of the real buffer
        }
    }
    if (abs(compose_scale - 1) > 1e-1)
        resize(full_img, img, Size(), compose_scale, compose_scale);
    else
        img = full_img;
    full_img.release();
    Size img_size = img.size();

    Mat K;
    cameras[img_idx].K().convertTo(K, CV_32F);

    // Warp the current image
    warper->warp(img, K, cameras[img_idx].R, INTER_LINEAR, BORDER_REFLECT, img_warped);
    // Warp the current image mask
    mask.create(img_size, CV_8U);
    mask.setTo(Scalar::all(255));
    warper->warp(mask, K, cameras[img_idx].R, INTER_NEAREST, BORDER_CONSTANT, mask_warped);
    // Compensate exposure
    compensator->apply(img_idx, corners[img_idx], img_warped, mask_warped);//光照补偿
    img_warped.convertTo(img_warped_s, CV_16S);
    img_warped.release();
    img.release();
    mask.release();

    dilate(masks_warped[img_idx], dilated_mask, Mat());
    resize(dilated_mask, seam_mask, mask_warped.size());
    mask_warped = seam_mask & mask_warped;
 对图像进行光照补偿,就是将对应区域乘以gain:

//块光照补偿
void BlocksGainCompensator::apply(int index, Point /corner/, Mat &image, const Mat &/mask/)
{
CV_Assert(image.type() == CV_8UC3);

Mat_<float> gain_map;
if (gain_maps_[index].size() == image.size())
    gain_map = gain_maps_[index];
else
    resize(gain_maps_[index], gain_map, image.size(), 0, 0, INTER_LINEAR);

for (int y = 0; y < image.rows; ++y)
{
    const float* gain_row = gain_map.ptr<float>(y);
    Point3_<uchar>* row = image.ptr<Point3_<uchar> >(y);
    for (int x = 0; x < image.cols; ++x)
    {
        row[x].x = saturate_cast<uchar>(row[x].x * gain_row[x]);
        row[x].y = saturate_cast<uchar>(row[x].y * gain_row[x]);
        row[x].z = saturate_cast<uchar>(row[x].z * gain_row[x]);
    }
}

}
进行多波段融合,首先初始化blend,确定blender的融合的方式,默认是多波段融合MULTI_BAND,以及根据corners顶点和图像的大小确定最终全景图的尺寸。

//初始化blender
if (blender.empty())
{
blender = Blender::createDefault(blend_type, try_gpu);
Size dst_sz = resultRoi(corners, sizes).size();//计算最后图像的大小
float blend_width = sqrt(static_cast(dst_sz.area())) * blend_strength / 100.f;
if (blend_width < 1.f)
blender = Blender::createDefault(Blender::NO, try_gpu);
else if (blend_type == Blender::MULTI_BAND)
{
MultiBandBlender* mb = dynamic_cast<MultiBandBlender*>(static_cast<Blender*>(blender));
mb->setNumBands(static_cast(ceil(log(blend_width)/log(2.)) - 1.));
LOGLN("Multi-band blender, number of bands: " << mb->numBands());
}
else if (blend_type == Blender::FEATHER)
{
FeatherBlender* fb = dynamic_cast<FeatherBlender*>(static_cast<Blender*>(blender));
fb->setSharpness(1.f/blend_width);
LOGLN("Feather blender, sharpness: " << fb->sharpness());
}
blender->prepare(corners, sizes);//根据corners顶点和图像的大小确定最终全景图的尺寸
}
然后对每幅图图形构建金字塔,层数可以由输入的系数确定,默认是5层。

  先对顶点以及图像的宽和高做处理,使其能被2^num_bands除尽,这样才能将进行向下采样num_bands次,首先从源图像pyrDown向下采样,在由最底部的图像pyrUp向上采样,把对应层得上采样和下采样的相减,就得到了图像的高频分量,存储到每一个金字塔中。然后根据mask,将每幅图像的各层金字塔分别写入最终的金字塔层src_pyr_laplace中。

  最后将各层的金字塔叠加,就得到了最终完整的全景图。

blender->feed(img_warped_s, mask_warped, corners[img_idx]);//将图像写入金字塔中
源码:

void MultiBandBlender::feed(const Mat &img, const Mat &mask, Point tl)
{
CV_Assert(img.type() == CV_16SC3 || img.type() == CV_8UC3);
CV_Assert(mask.type() == CV_8U);

// Keep source image in memory with small border
int gap = 3 * (1 << num_bands_);
Point tl_new(max(dst_roi_.x, tl.x - gap),
             max(dst_roi_.y, tl.y - gap));
Point br_new(min(dst_roi_.br().x, tl.x + img.cols + gap),
             min(dst_roi_.br().y, tl.y + img.rows + gap));

// Ensure coordinates of top-left, bottom-right corners are divided by (1 << num_bands_).
// After that scale between layers is exactly 2.
//
// We do it to avoid interpolation problems when keeping sub-images only. There is no such problem when
// image is bordered to have size equal to the final image size, but this is too memory hungry approach.
//将顶点调整成能被2^num_bank次方除尽的值
tl_new.x = dst_roi_.x + (((tl_new.x - dst_roi_.x) >> num_bands_) << num_bands_);
tl_new.y = dst_roi_.y + (((tl_new.y - dst_roi_.y) >> num_bands_) << num_bands_);
int width = br_new.x - tl_new.x;
int height = br_new.y - tl_new.y;
width += ((1 << num_bands_) - width % (1 << num_bands_)) % (1 << num_bands_);
height += ((1 << num_bands_) - height % (1 << num_bands_)) % (1 << num_bands_);
br_new.x = tl_new.x + width;
br_new.y = tl_new.y + height;
int dy = max(br_new.y - dst_roi_.br().y, 0);
int dx = max(br_new.x - dst_roi_.br().x, 0);
tl_new.x -= dx; br_new.x -= dx;
tl_new.y -= dy; br_new.y -= dy;

int top = tl.y - tl_new.y;
int left = tl.x - tl_new.x;
int bottom = br_new.y - tl.y - img.rows;
int right = br_new.x - tl.x - img.cols;

// Create the source image Laplacian pyramid
Mat img_with_border;
copyMakeBorder(img, img_with_border, top, bottom, left, right,
               BORDER_REFLECT);//给图像设置一个边界,BORDER_REFLECT边界颜色任意
vector<Mat> src_pyr_laplace;
if (can_use_gpu_ && img_with_border.depth() == CV_16S)
    createLaplacePyrGpu(img_with_border, num_bands_, src_pyr_laplace);
else
    createLaplacePyr(img_with_border, num_bands_, src_pyr_laplace);//创建高斯金字塔,每一层保存的全是高频信息

// Create the weight map Gaussian pyramid
Mat weight_map;
vector<Mat> weight_pyr_gauss(num_bands_ + 1);

if(weight_type_ == CV_32F)
{
    mask.convertTo(weight_map, CV_32F, 1./255.);//将mask的0,255归一化成0,1
}
else// weight_type_ == CV_16S
{
    mask.convertTo(weight_map, CV_16S);
    add(weight_map, 1, weight_map, mask != 0);
}

copyMakeBorder(weight_map, weight_pyr_gauss[0], top, bottom, left, right, BORDER_CONSTANT);

for (int i = 0; i < num_bands_; ++i)
    pyrDown(weight_pyr_gauss[i], weight_pyr_gauss[i + 1]);

int y_tl = tl_new.y - dst_roi_.y;
int y_br = br_new.y - dst_roi_.y;
int x_tl = tl_new.x - dst_roi_.x;
int x_br = br_new.x - dst_roi_.x;

// Add weighted layer of the source image to the final Laplacian pyramid layer
if(weight_type_ == CV_32F)
{
    for (int i = 0; i <= num_bands_; ++i)
    {
        for (int y = y_tl; y < y_br; ++y)
        {
            int y_ = y - y_tl;
            const Point3_<short>* src_row = src_pyr_laplace[i].ptr<Point3_<short> >(y_);
            Point3_<short>* dst_row = dst_pyr_laplace_[i].ptr<Point3_<short> >(y);
            const float* weight_row = weight_pyr_gauss[i].ptr<float>(y_);
            float* dst_weight_row = dst_band_weights_[i].ptr<float>(y);

            for (int x = x_tl; x < x_br; ++x)
            {
                int x_ = x - x_tl;
                dst_row[x].x += static_cast<short>(src_row[x_].x * weight_row[x_]);
                dst_row[x].y += static_cast<short>(src_row[x_].y * weight_row[x_]);
                dst_row[x].z += static_cast<short>(src_row[x_].z * weight_row[x_]);
                dst_weight_row[x] += weight_row[x_];
            }
        }
        x_tl /= 2; y_tl /= 2;
        x_br /= 2; y_br /= 2;
    }
}
else// weight_type_ == CV_16S
{
    for (int i = 0; i <= num_bands_; ++i)
    {
        for (int y = y_tl; y < y_br; ++y)
        {
            int y_ = y - y_tl;
            const Point3_<short>* src_row = src_pyr_laplace[i].ptr<Point3_<short> >(y_);
            Point3_<short>* dst_row = dst_pyr_laplace_[i].ptr<Point3_<short> >(y);
            const short* weight_row = weight_pyr_gauss[i].ptr<short>(y_);
            short* dst_weight_row = dst_band_weights_[i].ptr<short>(y);

            for (int x = x_tl; x < x_br; ++x)
            {
                int x_ = x - x_tl;
                dst_row[x].x += short((src_row[x_].x * weight_row[x_]) >> 8);
                dst_row[x].y += short((src_row[x_].y * weight_row[x_]) >> 8);
                dst_row[x].z += short((src_row[x_].z * weight_row[x_]) >> 8);
                dst_weight_row[x] += weight_row[x_];
            }
        }
        x_tl /= 2; y_tl /= 2;
        x_br /= 2; y_br /= 2;
    }
}

}
其中,金字塔构建的源码:

void createLaplacePyr(const Mat &img, int num_levels, vector &pyr)
{
#ifdef HAVE_TEGRA_OPTIMIZATION
if(tegra::createLaplacePyr(img, num_levels, pyr))
return;
#endif

pyr.resize(num_levels + 1);

if(img.depth() == CV_8U)
{
    if(num_levels == 0)
    {
        img.convertTo(pyr[0], CV_16S);
        return;
    }

    Mat downNext;
    Mat current = img;
    pyrDown(img, downNext);

    for(int i = 1; i < num_levels; ++i)
    {
        Mat lvl_up;
        Mat lvl_down;

        pyrDown(downNext, lvl_down);
        pyrUp(downNext, lvl_up, current.size());
        subtract(current, lvl_up, pyr[i-1], noArray(), CV_16S);

        current = downNext;
        downNext = lvl_down;
    }

    {
        Mat lvl_up;
        pyrUp(downNext, lvl_up, current.size());
        subtract(current, lvl_up, pyr[num_levels-1], noArray(), CV_16S);

        downNext.convertTo(pyr[num_levels], CV_16S);
    }
}
else
{
    pyr[0] = img;
	//构建高斯金字塔
    for (int i = 0; i < num_levels; ++i)
        pyrDown(pyr[i], pyr[i + 1]);//先高斯滤波,在亚采样,得到比pyr【i】缩小一半的图像
    Mat tmp;
    for (int i = 0; i < num_levels; ++i)
    {
        pyrUp(pyr[i + 1], tmp, pyr[i].size());//插值(偶数行,偶数列赋值为0),然后高斯滤波,核是5*5。
        subtract(pyr[i], tmp, pyr[i]);//pyr[i] = pyr[i]-tmp,得到的全是高频信息
    }
}

}
最终把所有层得金字塔叠加的程序:

Mat result, result_mask;
blender->blend(result, result_mask);//将多层金字塔图形叠加
 源码:

void MultiBandBlender::blend(Mat &dst, Mat &dst_mask)
{
for (int i = 0; i <= num_bands_; ++i)
normalizeUsingWeightMap(dst_band_weights_[i], dst_pyr_laplace_[i]);

if (can_use_gpu_)
    restoreImageFromLaplacePyrGpu(dst_pyr_laplace_);
else
    restoreImageFromLaplacePyr(dst_pyr_laplace_);

dst_ = dst_pyr_laplace_[0];
dst_ = dst_(Range(0, dst_roi_final_.height), Range(0, dst_roi_final_.width));
dst_mask_ = dst_band_weights_[0] > WEIGHT_EPS;
dst_mask_ = dst_mask_(Range(0, dst_roi_final_.height), Range(0, dst_roi_final_.width));
dst_pyr_laplace_.clear();
dst_band_weights_.clear();

Blender::blend(dst, dst_mask);

}

猜你喜欢

转载自blog.csdn.net/qjh5606/article/details/82728963
今日推荐