简单总结ConcurrentHashMap

一、HashTable

hashTable是一个线程安全的容器,是线程安全版本的HashMap。但它的底层是和HashMap一样的,只是在方法上都加上了synchronized关键字。

这样子有什么后果呢:

  1. 效率及低,意味着每个线程在执行HashTable的方法的时候,或者说操纵HashTable的时候,都要锁住整个对象。也就是让并行并发的访问,变成了串行。
  2. 复合操作会有线程安全问题。因为它是每个方法都加锁了,这意味着在执行单个方法像put,contains方法的时候,是可以保证原子性的,但如果是执行一个复合操作的时候,就不保证了。
if(!table.contains("key")) {
    map.put("key", object);
}

类似于这样的方法,当线程1在执行if里面的判断的时候,线程1会获得table实例的所,其他线程无法访问table的其他同步方法。但当线程1判断完if后,锁会放掉,这个时候如果线程2进来,获得table实例的锁,然后put了一个”key“进来,然后再放锁;那么线程1再执行put方法就不对了。(它本来是以为没有这个key再put的)

二、concurrentHashMap1.7

并发思路

concurrenthashMap是采用一个叫做分段所的机制。

它可以看作是一个二重hashMap,首先concurrentHashMap是一个segment数组,每个segment都是一个继承了ReentrantLock的类,这样就可以方便地在各个segment里面加锁所以每次需要加锁的操作锁住的是一个 segment,这样只要保证每个 Segment 是线程安全的,也就实现了全局的线程安全。

哦哦还要注意,这个最外面的Segment[]数组,是不可以扩容的!

然后进到Segment内部,会发现,每个Segment可以看作一个HashMap。也就是在一个Segment里面,有个HashEntry[]数组,然后这个数组是一个个桶,桶里面是单向链表。

(图片来自:http://www.importnew.com/28263.html)

构造函数

然后我们通过构造函数进入,顺便了解ConcurrentHashMap中重要的field吧。

public ConcurrentHashMap(int initialCapacity,
                         float loadFactor, int concurrencyLevel) {
    if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
        throw new IllegalArgumentException();
    if (concurrencyLevel > MAX_SEGMENTS)
        concurrencyLevel = MAX_SEGMENTS;
    // Find power-of-two sizes best matching arguments
    int sshift = 0;
    int ssize = 1;
    // 计算并行级别 ssize,因为要保持并行级别是 2 的 n 次方
    while (ssize < concurrencyLevel) {
        ++sshift;
        ssize <<= 1;
    }
    // 我们这里先不要那么烧脑,用默认值,concurrencyLevel 为 16,sshift 为 4
    // 那么计算出 segmentShift 为 28,segmentMask 为 15,后面会用到这两个值
    this.segmentShift = 32 - sshift;
    this.segmentMask = ssize - 1;
 
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
 
    // initialCapacity 是设置整个 map 初始的大小,
    // 这里根据 initialCapacity 计算 Segment 数组中每个位置可以分到的大小
    // 如 initialCapacity 为 64,那么每个 Segment 或称之为"槽"可以分到 4 个
    int c = initialCapacity / ssize;
    if (c * ssize < initialCapacity)
        ++c;
    // 默认 MIN_SEGMENT_TABLE_CAPACITY 是 2,这个值也是有讲究的,因为这样的话,对于具体的槽上,
    // 插入一个元素不至于扩容,插入第二个的时候才会扩容
    int cap = MIN_SEGMENT_TABLE_CAPACITY; 
    while (cap < c)
        cap <<= 1;
 
    // 创建 Segment 数组,
    // 并创建数组的第一个元素 segment[0]
    Segment<K,V> s0 =
        new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                         (HashEntry<K,V>[])new HashEntry[cap]);
    Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
    // 往数组写入 segment[0]
    UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
    this.segments = ss;
}

initialCapacity和以前一样,指的是这个ConcurrenthashMap的初始容量,或者说是理解成初始桶的数量。但我们这个hashmap是有两重表的嘛,所以在实际操作的时候会把这个值分配给各个Segment,也就相当于间接指定了每个Segment中应该有几个桶。

loadFactor和一般的hashTable一样,负载因子,size/capacity。但上面说了Segment数组是不可以扩容的,所以这个也是给Segment里面的数组用的。

concurrencyLevel:concurrencyLevel:并行级别、并发数、Segment 数,怎么翻译不重要,理解它。默认是 16,也就是说 ConcurrentHashMap 有 16 个 Segments,所以理论上,这个时候,最多可以同时支持 16 个线程并发写,只要它们的操作分别分布在不同的 Segment 上。这个值可以在初始化的时候设置为其他值,但是一旦初始化以后,它是不可以扩容的。

segmentShift:

这个值=32 - shift,shift是你>=你传进来的concurrentLevel的一个2次幂数的左移位数。而二次幂的数字,都是10000这样的嘛,所以shift就是10000中0的个数。

所以field segmentShift我觉得可以理解成000000100000(32位数字),然后是前面的0加上1的位数就是segmentShift吧。

SegmetnMask:

掩码嘛,就二次幂处理后的concurrentLevel的长度 - 1,得到的就类似0111111这样咯,所以等等用来做与操作用的。

然后最后那个Unsafe的putOrderObject一个不安全的直接操纵内存的方法,应该是因为这样会快点吧。这个order应该是防止指令重排序的意思。

要了解Unsafe可以看这篇文章:https://www.cnblogs.com/throwable/p/9139947.html

如果我们就当是用 new ConcurrentHashMap() 无参构造函数进行初始化的,那么初始化完成后:

Segment 数组长度为 16,不可以扩容
Segment[i] 的默认大小为 2,负载因子是 0.75,得出初始阈值为 1.5,也就是以后插入第一个元素不会触发扩容,插入第二个会进行第一次扩容
这里初始化了 segment[0],其他位置还是 null,至于为什么要初始化 segment[0],后面的代码会介绍
当前 segmentShift 的值为 32 – 4 = 28,segmentMask 为 16 – 1 = 15,姑且把它们简单翻译为移位数和掩码,这两个值马上就会用到

put方法

然后来看重要的put方法。

先看put的主流程:

public V put(K key, V value) {
    Segment<K,V> s;
    if (value == null)
        throw new NullPointerException();
    // 1. 计算 key 的 hash 值
    int hash = hash(key);
    // 2. 根据 hash 值找到 Segment 数组中的位置 j
    //    hash 是 32 位,无符号右移 segmentShift(28) 位,剩下低 4 位,
    //    然后和 segmentMask(15) 做一次与操作,也就是说 j 是 hash 值的最后 4 位,也就是槽的数组下标
    int j = (hash >>> segmentShift) & segmentMask;
    // 刚刚说了,初始化的时候初始化了 segment[0],但是其他位置还是 null,
    // ensureSegment(j) 对 segment[j] 进行初始化
    if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
         (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
        s = ensureSegment(j);
    // 3. 插入新值到 槽 s 中
    return s.put(key, hash, value, false);
}

这里的主流程是在第一层表格的操作。就根据key的hash值,找到Segment[]数组的桶序号,然后先初始化这个segment[j](构造器中只初始化了segment[0]),然后进入这个segmetn[j],交给这个segment[j](局部HashMap)继续执行put操作。

求j的时候,hash值移了segmentShift后,刚好只剩后面四位(默认情况的话),刚好等于segmentMask15(4位)的位数,然后再相与就得到一个序号咯。

然后就通过s.put(key, hash, value, false);进入Segment内部的那个局部Hashmap的put方法。、

先看看这个初始化segment[j]的方法。

ensureSegment(j):

private Segment<K,V> ensureSegment(int k) {
    final Segment<K,V>[] ss = this.segments;
    long u = (k << SSHIFT) + SBASE; // raw offset
    Segment<K,V> seg;
    if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
        // 这里看到为什么之前要初始化 segment[0] 了,
        // 使用当前 segment[0] 处的数组长度和负载因子来初始化 segment[k]
        // 为什么要用“当前”,因为 segment[0] 可能早就扩容过了
        Segment<K,V> proto = ss[0];
        int cap = proto.table.length;
        float lf = proto.loadFactor;
        int threshold = (int)(cap * lf);
 
        // 初始化 segment[k] 内部的数组
        HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
        if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
            == null) { // 再次检查一遍该槽是否被其他线程初始化了。
 
            Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
            // 使用 while 循环,内部用 CAS,当前线程成功设值或其他线程成功设值后,退出
            while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
                   == null) {
                if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
                    break;
            }
        }
    }
    return seg;
}

这里需要考虑并发,因为很可能会有多个线程同时进来初始化同一个槽 segment[k],不过只要有一个成功了就可以。

这里就用构造其中已经初始化好了的segment[0](也可能已经有元素了)的数据来构造segment[j]咯,然后再用自旋的CAS操作来更新segment数组中的j桶,更新成功或者是有别的线程更新成功都会跳出循环。

再来看segment里面的局部HashMap的put方法。

Segment里面的hashMap的put方法:

final V put(K key, int hash, V value, boolean onlyIfAbsent) {
    // 在往该 segment 写入前,需要先获取该 segment 的独占锁
    //    先看主流程,后面还会具体介绍这部分内容
    HashEntry<K,V> node = tryLock() ? null :
        scanAndLockForPut(key, hash, value);
    V oldValue;
    try {
        // 这个是 segment 内部的数组
        HashEntry<K,V>[] tab = table;
        // 再利用 hash 值,求应该放置的数组下标
        int index = (tab.length - 1) & hash;
        // first 是数组该位置处的链表的表头
        HashEntry<K,V> first = entryAt(tab, index);
 
        // 下面这串 for 循环虽然很长,不过也很好理解,想想该位置没有任何元素和已经存在一个链表这两种情况
        for (HashEntry<K,V> e = first;;) {
            if (e != null) {
                K k;
                if ((k = e.key) == key ||
                    (e.hash == hash && key.equals(k))) {
                    oldValue = e.value;
                    if (!onlyIfAbsent) {
                        // 覆盖旧值
                        e.value = value;
                        ++modCount;
                    }
                    break;
                }
                // 继续顺着链表走
                e = e.next;
            }
            else {
                // node 到底是不是 null,这个要看获取锁的过程,不过和这里都没有关系。
                // 如果不为 null,那就直接将它设置为链表表头;如果是null,初始化并设置为链表表头。
                if (node != null)
                    node.setNext(first);
                else
                    node = new HashEntry<K,V>(hash, key, value, first);
 
                int c = count + 1;
                // 如果超过了该 segment 的阈值,这个 segment 需要扩容
                if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                    rehash(node); // 扩容后面也会具体分析
                else
                    // 没有达到阈值,将 node 放到数组 tab 的 index 位置,
                    // 其实就是将新的节点设置成原链表的表头
                    setEntryAt(tab, index, node);
                ++modCount;
                count = c;
                oldValue = null;
                break;
            }
        }
    } finally {
        // 解锁
        unlock();
    }
    return oldValue;
}
View Code

我们可以看到,代码一开始就先去获得所在Segment的锁:

 HashEntry<K,V> node = tryLock() ? null :
        scanAndLockForPut(key, hash, value);

首先,这个tryLock()是个快速获得锁的方法,获得的话就返回ture,那么node就赋值为null。

如果没获得锁的话,说明存在竞争,那么就进入scanAndLockForPut方法。这个方法的话其实也就是不断去尝试获得这个Segment的锁,里面还有可能顺便初始化下这个node元素。(就可能顺便构造下你要插入的那个键值对的node)

这个scanAndLockForPut的方法等等下面才去分析,这两行代码的结果就是——获得了segment的锁,然后可能初始化了node也可能没有。(看下面代码会知道node有没有初始化没所谓的)

然后就正常的put操作了。这里是带锁了的,所以不用怕其他的写操作会影响。

可以看到,node为空它就new一个相关Entry,不为空就直接头插入,所以是不是null不影响代码逻辑。

关于这个setEntryAt方法,可以简单看看它的代码:

static final <K,V> void setEntryAt(HashEntry<K,V>[] tab, int i,
                                       HashEntry<K,V> e) {
        UNSAFE.putOrderedObject(tab, ((long)i << TSHIFT) + TBASE, e);
   }

也是用了个防止重排序的方法,再加上本来Segment里面的table还有Entry里面重要的相关指针都是volatile的,所以可以让读操作也安全。

然后就来看这个scanAndLockForPut了:

private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
    HashEntry<K,V> first = entryForHash(this, hash);
    HashEntry<K,V> e = first;
    HashEntry<K,V> node = null;
    int retries = -1; // negative while locating node
 
    // 循环获取锁
    while (!tryLock()) {
        HashEntry<K,V> f; // to recheck first below
        if (retries < 0) {
            if (e == null) {
                if (node == null) // speculatively create node
                    // 进到这里说明数组该位置的链表是空的,没有任何元素
                    // 当然,进到这里的另一个原因是 tryLock() 失败,所以该槽存在并发,不一定是该位置
                    node = new HashEntry<K,V>(hash, key, value, null);
                retries = 0;
            }
            else if (key.equals(e.key))
                retries = 0;
            else
                // 顺着链表往下走
                e = e.next;
        }
        // 重试次数如果超过 MAX_SCAN_RETRIES(单核1多核64),那么不抢了,进入到阻塞队列等待锁
        //    lock() 是阻塞方法,直到获取锁后返回
        else if (++retries > MAX_SCAN_RETRIES) {
            lock();
            break;
        }
        else if ((retries & 1) == 0 &&
                 // 这个时候是有大问题了,那就是有新的元素进到了链表,成为了新的表头
                 //     所以这边的策略是,相当于重新走一遍这个 scanAndLockForPut 方法
                 (f = entryForHash(this, hash)) != first) {
            e = first = f; // re-traverse if entry changed
            retries = -1;
        }
    }
    return node;
View Code

代码全在一个不断尝试拿锁的while循环里进行,代码逻辑大概是用这个retries来控制流程。

当这个retries<0的时候,也就是初始情况,这里做的是遍历这个桶的链表,看看有没这个要put的key的entry,如果有的话就停下来,retries置为0,没有的话顺便new一个node,然后retries置为0。

如果retries尝试的次数太大了,就会lock(),这个方法是堵塞锁,类似synchronized(解锁在put方法中),直到拿到锁才break。

最后一个情况大概是发生了冲突了,就重新走一次这个方法。

这个方法有两个出口,一个是 tryLock() 成功了,循环终止,另一个就是重试次数超过了 MAX_SCAN_RETRIES,进到 lock() 方法,此方法会阻塞等待,直到成功拿到独占锁。

这个方法就是看似复杂,但是其实就是做了一件事,那就是获取该 segment 的独占锁,如果需要的话顺便实例化了一下 node。

扩容方法rehash

重复一下,segment 数组不能扩容,扩容是 segment 数组某个位置内部的数组 HashEntry\[] 进行扩容,扩容后,容量为原来的 2 倍。

首先,我们要回顾一下触发扩容的地方,put 的时候,如果判断该值的插入会导致该 segment 的元素个数超过阈值,那么先进行扩容,再插值,读者这个时候可以回去 put 方法看一眼。

该方法不需要考虑并发,因为到这里的时候,是持有该 segment 的独占锁的。

看代码:

// 方法参数上的 node 是这次扩容后,需要添加到新的数组中的数据。
private void rehash(HashEntry<K,V> node) {
    HashEntry<K,V>[] oldTable = table;
    int oldCapacity = oldTable.length;
    // 2 倍
    int newCapacity = oldCapacity << 1;
    threshold = (int)(newCapacity * loadFactor);
    // 创建新数组
    HashEntry<K,V>[] newTable =
        (HashEntry<K,V>[]) new HashEntry[newCapacity];
    // 新的掩码,如从 16 扩容到 32,那么 sizeMask 为 31,对应二进制 ‘000...00011111’
    int sizeMask = newCapacity - 1;
 
    // 遍历原数组,老套路,将原数组位置 i 处的链表拆分到 新数组位置 i 和 i+oldCap 两个位置
    for (int i = 0; i < oldCapacity ; i++) {
        // e 是链表的第一个元素
        HashEntry<K,V> e = oldTable[i];
        if (e != null) {
            HashEntry<K,V> next = e.next;
            // 计算应该放置在新数组中的位置,
            // 假设原数组长度为 16,e 在 oldTable[3] 处,那么 idx 只可能是 3 或者是 3 + 16 = 19
            int idx = e.hash & sizeMask;
            if (next == null)   // 该位置处只有一个元素,那比较好办
                newTable[idx] = e;
            else { // Reuse consecutive sequence at same slot
                // e 是链表表头
                HashEntry<K,V> lastRun = e;
                // idx 是当前链表的头结点 e 的新位置
                int lastIdx = idx;
 
                // 下面这个 for 循环会找到一个 lastRun 节点,这个节点之后的所有元素是将要放到一起的
                for (HashEntry<K,V> last = next;
                     last != null;
                     last = last.next) {
                    int k = last.hash & sizeMask;
                    if (k != lastIdx) {
                        lastIdx = k;
                        lastRun = last;
                    }
                }
                // 将 lastRun 及其之后的所有节点组成的这个链表放到 lastIdx 这个位置
                newTable[lastIdx] = lastRun;
                // 下面的操作是处理 lastRun 之前的节点,
                //    这些节点可能分配在另一个链表中,也可能分配到上面的那个链表中
                for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
                    V v = p.value;
                    int h = p.hash;
                    int k = h & sizeMask;
                    HashEntry<K,V> n = newTable[k];
                    newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
                }
            }
        }
    }
    // 将新来的 node 放到新数组中刚刚的 两个链表之一 的 头部
    int nodeIndex = node.hash & sizeMask; // add the new node
    node.setNext(newTable[nodeIndex]);
    newTable[nodeIndex] = node;
    table = newTable;
}
View Code

找桶用的是直接重新和新的capacity - 1的值与的方法。

转移操作用了个改良的算法吧,没怎么认真看,直接上参考文章的分析:

这里的扩容比之前的 HashMap 要复杂一些,代码难懂一点。上面有两个挨着的 for 循环,第一个 for 有什么用呢?

仔细一看发现,如果没有第一个 for 循环,也是可以工作的,但是,这个 for 循环下来,如果 lastRun 的后面还有比较多的节点,那么这次就是值得的。因为我们只需要克隆 lastRun 前面的节点,后面的一串节点跟着 lastRun 走就是了,不需要做任何操作。

我觉得 Doug Lea 的这个想法也是挺有意思的,不过比较坏的情况就是每次 lastRun 都是链表的最后一个元素或者很靠后的元素,那么这次遍历就有点浪费了。不过 Doug Lea 也说了,根据统计,如果使用默认的阈值,大约只有 1/6 的节点需要克隆。

get过程

相对于 put 来说,get 真的不要太简单。

计算 hash 值,找到 segment 数组中的具体位置,或我们前面用的“槽”
槽中也是一个数组,根据 hash 找到数组中具体的位置
到这里是链表了,顺着链表进行查找即可

public V get(Object key) {
    Segment<K,V> s; // manually integrate access methods to reduce overhead
    HashEntry<K,V>[] tab;
    // 1. hash 值
    int h = hash(key);
    long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
    // 2. 根据 hash 找到对应的 segment
    if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
        (tab = s.table) != null) {
        // 3. 找到segment 内部数组相应位置的链表,遍历
        for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                 (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
             e != null; e = e.next) {
            K k;
            if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                return e.value;
        }
    }
    return null;
}
View Code

这里用了个getObjectVolatile来保证读的可见性。

并发问题分析

现在我们已经说完了 put 过程和 get 过程,我们可以看到 get 过程中是没有加锁的,那自然我们就需要去考虑并发问题。

添加节点的操作 put 和删除节点的操作 remove 都是要加 segment 上的独占锁的,所以它们之间自然不会有问题,我们需要考虑的问题就是 get 的时候在同一个 segment 中发生了 put 或 remove 操作。

1. put 操作的线程安全性。

  • 初始化槽,这个我们之前就说过了,使用了 CAS 来初始化 Segment 中的数组。
  • 添加节点到链表的操作是插入到表头的,所以,如果这个时候 get 操作在链表遍历的过程已经到了中间,是不会影响的。当然,另一个并发问题就是 get 操作在 put 之后,需要保证刚刚插入表头的节点被读取,这个依赖于 setEntryAt 方法中使用的 UNSAFE.putOrderedObject还有相关的volatile的field。
  • 扩容。扩容是新创建了数组,然后进行迁移数据,最后面将 newTable 设置给属性 table。所以,如果 get 操作此时也在进行,那么也没关系,如果 get 先行,那么就是在旧的 table 上做查询操作;而 put 先行,那么 put 操作的可见性保证就是 table 使用了 volatile 关键字。


2. remove 操作的线程安全性。
remove 操作我们没有分析源码,所以这里说的读者感兴趣的话还是需要到源码中去求实一下的。

get 操作需要遍历链表,但是 remove 操作会”破坏”链表。

如果 remove 破坏的节点 get 操作已经过去了,那么这里不存在任何问题。

如果 remove 先破坏了一个节点,分两种情况考虑。 1、如果此节点是头结点,那么需要将头结点的 next 设置为数组该位置的元素,table 虽然使用了 volatile 修饰,但是 volatile 并不能提供数组内部操作的可见性保证,所以源码中使用了 UNSAFE 来操作数组,请看方法 setEntryAt。2、如果要删除的节点不是头结点,它会将要删除节点的后继节点接到前驱节点中,这里的并发保证就是 next 属性是 volatile 的。

总之,首先segment分段所保证了单一的写、删是无并发危险的。

然后读和这些更改性的操作呢,首先是通过table的volatile,然后涉及table中桶元素的替换(要访问桶的第一个元素的时候),就利用setEntryAt方法中的unsafe的保证有序性的方法。

涉及读非头节点的,除了以上措施还有就是Entry中的next属性也是volatile的。

三、ConcurrentHashMap——1.8

1.8的concurrentHashMap真心难懂,特别是扩容还有转移方法……

这个版本的hashMap摒弃了Segment的概念,主要是采用CAS算法,底层用的是和1.8的HashMap一样的数组+链表+红黑树的实现。

emmm关于红黑树就不在这里讲了

先讲几个重要的属性和需要了解的东西

sizeCtl

这个是在ConcurrenthashMap中很重要的一个field,它在流程控制和逻辑代码上起着重要的作用。

  • 不同状态,sizeCtl所代表的含义也有所不同。

    • 未初始化:
      • sizeCtl=0:表示没有指定初始容量。
      • sizeCtl>0:表示初始容量。
    • 初始化中:

      • sizeCtl=-1,标记作用,告知其他线程,正在初始化
    • 正常状态:

      • sizeCtl=0.75n ,扩容阈值
    • 扩容中:

      • sizeCtl < 0 : 表示有其他线程正在执行扩容
      • sizeCtl = (resizeStamp(n) << RESIZE_STAMP_SHIFT) + 2 :表示此时只有一个线程在执行扩容

ForwardingNode

一个用于连接两个table的节点类。它包含一个nextTable指针,用于指向下一张表。而且这个节点的key value next指针全部为null,它的hash值为-1. 这里面定义的find的方法是从nextTable里进行查询节点,而不是以自身为头节点进行查找。

大量的Unsafe和CAS

在ConcurrentHashMap中,随处可以看到U, 大量使用了U.compareAndSwapXXX的方法,这个方法是利用一个CAS算法实现无锁化的修改值的操作(利用Unsafe来获得底层的相关支持CAS的方法),他可以大大降低锁代理的性能消耗。这个算法的基本思想就是不断地去比较当前内存中的变量值与你指定的一个变量值是否相等,如果相等,则接受你指定的修改的值,否则拒绝你的操作。因为当前线程中的值已经不是最新的值,你的修改很可能会覆盖掉其他线程修改的结果。这一点与乐观锁,SVN的思想是比较类似的。

  unsafe静态块

  unsafe代码块控制了一些属性的修改工作,比如最常用的SIZECTL 。在这一版本的concurrentHashMap中,大量应用来的CAS方法进行变量、属性的修改工作。利用CAS进行无锁操作,可以大大提高性能。

private static final sun.misc.Unsafe U;
    private static final long SIZECTL;
    private static final long TRANSFERINDEX;
    private static final long BASECOUNT;
    private static final long CELLSBUSY;
    private static final long CELLVALUE;
    private static final long ABASE;
    private static final int ASHIFT;

    static {
        try {
            U = sun.misc.Unsafe.getUnsafe();
            Class<?> k = ConcurrentHashMap.class;
            SIZECTL = U.objectFieldOffset
                (k.getDeclaredField("sizeCtl"));
            TRANSFERINDEX = U.objectFieldOffset
                (k.getDeclaredField("transferIndex"));
            BASECOUNT = U.objectFieldOffset
                (k.getDeclaredField("baseCount"));
            CELLSBUSY = U.objectFieldOffset
                (k.getDeclaredField("cellsBusy"));
            Class<?> ck = CounterCell.class;
            CELLVALUE = U.objectFieldOffset
                (ck.getDeclaredField("value"));
            Class<?> ak = Node[].class;
            ABASE = U.arrayBaseOffset(ak);
            int scale = U.arrayIndexScale(ak);
            if ((scale & (scale - 1)) != 0)
                throw new Error("data type scale not a power of two");
            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
        } catch (Exception e) {
            throw new Error(e);
        }
    }
View Code

  三个关于table中桶的相关操作的核心方法

  ConcurrentHashMap定义了三个原子操作,用于对指定位置的节点进行操作。正是这些原子操作保证了ConcurrentHashMap的线程安全。

//获得在i位置上的Node节点
    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
    }
        //利用CAS算法设置i位置上的Node节点。之所以能实现并发是因为他指定了原来这个节点的值是多少
        //在CAS算法中,会比较内存中的值与你指定的这个值是否相等,如果相等才接受你的修改,否则拒绝你的修改
        //因此当前线程中的值并不是最新的值,这种修改可能会覆盖掉其他线程的修改结果  有点类似于SVN
    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
                                        Node<K,V> c, Node<K,V> v) {
        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
    }
        //利用volatile方法设置节点位置的值
    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
    }
View Code

从构造函数的初始化开始看吧

// 这构造函数里,什么都不干
public ConcurrentHashMap() {
}
public ConcurrentHashMap(int initialCapacity) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException();
    int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
               MAXIMUM_CAPACITY :
               tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
    this.sizeCtl = cap;
}

这个初始化方法有点意思,通过提供初始容量,计算了 sizeCtl,sizeCtl = 【 (1.5 * initialCapacity + 1),然后向上取最近的 2 的 n 次方】。如 initialCapacity 为 10,那么得到 sizeCtl 为 16,如果 initialCapacity 为 11,得到 sizeCtl 为 32。

emm现在这个sizeCtl好像冲当一个capacity的角色,在put方法中,initial表格的时候好像又会把这个sizeCtl变成类似一个threshold的角色,给扩容的时候做判断。

然后直接通过put方法来更深入吧

put:

public V put(K key, V value) {
    return putVal(key, value, false);
}
final V putVal(K key, V value, boolean onlyIfAbsent) {
    if (key == null || value == null) throw new NullPointerException();
    // 得到 hash 值
    int hash = spread(key.hashCode());
    // 用于记录相应链表的长度
    int binCount = 0;
    for (Node<K,V>[] tab = table;;) {
        Node<K,V> f; int n, i, fh;
        // 如果数组"空",进行数组初始化
        if (tab == null || (n = tab.length) == 0)
            // 初始化数组,后面会详细介绍
            tab = initTable();
 
        // 找该 hash 值对应的数组下标,得到第一个节点 f
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            // 如果数组该位置为空,
            //    用一次 CAS 操作将这个新值放入其中即可,这个 put 操作差不多就结束了,可以拉到最后面了
            //          如果 CAS 失败,那就是有并发操作,进到下一个循环就好了
            if (casTabAt(tab, i, null,
                         new Node<K,V>(hash, key, value, null)))
                break;                   // no lock when adding to empty bin
        }
        // hash 居然可以等于 MOVED,这个需要到后面才能看明白,不过从名字上也能猜到,肯定是因为在扩容
        else if ((fh = f.hash) == MOVED)
            // 帮助数据迁移,这个等到看完数据迁移部分的介绍后,再理解这个就很简单了
            tab = helpTransfer(tab, f);
 
        else { // 到这里就是说,f 是该位置的头结点,而且不为空
 
            V oldVal = null;
            // 获取数组该位置的头结点的监视器锁
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    if (fh >= 0) { // 头结点的 hash 值大于 0,说明是链表
                        // 用于累加,记录链表的长度
                        binCount = 1;
                        // 遍历链表
                        for (Node<K,V> e = f;; ++binCount) {
                            K ek;
                            // 如果发现了"相等"的 key,判断是否要进行值覆盖,然后也就可以 break 了
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) {
                                oldVal = e.val;
                                if (!onlyIfAbsent)
                                    e.val = value;
                                break;
                            }
                            // 到了链表的最末端,将这个新值放到链表的最后面
                            Node<K,V> pred = e;
                            if ((e = e.next) == null) {
                                pred.next = new Node<K,V>(hash, key,
                                                          value, null);
                                break;
                            }
                        }
                    }
                    else if (f instanceof TreeBin) { // 红黑树
                        Node<K,V> p;
                        binCount = 2;
                        // 调用红黑树的插值方法插入新节点
                        if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                       value)) != null) {
                            oldVal = p.val;
                            if (!onlyIfAbsent)
                                p.val = value;
                        }
                    }
                }
            }
            // binCount != 0 说明上面在做链表操作
            if (binCount != 0) {
                // 判断是否要将链表转换为红黑树,临界值和 HashMap 一样,也是 8
                if (binCount >= TREEIFY_THRESHOLD)
                    // 这个方法和 HashMap 中稍微有一点点不同,那就是它不是一定会进行红黑树转换,
                    // 如果当前数组的长度小于 64,那么会选择进行数组扩容,而不是转换为红黑树
                    //    具体源码我们就不看了,扩容部分后面说
                    treeifyBin(tab, i);
                if (oldVal != null)
                    return oldVal;
                break;
            }
        }
    }
    // 
    addCount(1L, binCount);
    return null;
}
View Code

put是在一个for的无限循环中进行的,大概分为这几个情况:

1. 表格为空,初始化先。

2. 桶中没有东西,那就直接用CAS来为桶中的头指针设值。

else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            // 如果数组该位置为空,
            //    用一次 CAS 操作将这个新值放入其中即可,这个 put 操作差不多就结束了,可以拉到最后面了
            //          如果 CAS 失败,那就是有并发操作,进到下一个循环就好了
            if (casTabAt(tab, i, null,
                         new Node<K,V>(hash, key, value, null)))
                break;                   // no lock when adding to empty bin
        }

3. else if ((fh = f.hash) == MOVED),就帮助数据迁移。

4. 桶中不为空,且不是处于迁移状态,那么就用synchronized来进行put操作。这里面包括找到key的替换操作;没找到key的链表尾插入操作;数量达到阈值的树化操作;本来就是树结点交给树来做put操作

put完后,出去循环,然后addCount方法,这个方法也是有点烦的,大概做了两件事:

  • 对 table 的长度加一。无论是通过修改 baseCount,还是通过使用 CounterCell。当 CounterCell 被初始化了,就优先使用他,不再使用 baseCount。

  • 检查是否需要扩容,或者是否正在扩容。如果需要扩容,就调用扩容方法,如果正在扩容,就帮助其扩容。


下面来慢慢看这些方法。
 
 
先是initialTable
private final Node<K,V>[] initTable() {
    Node<K,V>[] tab; int sc;
    while ((tab = table) == null || tab.length == 0) {
        // 初始化的"功劳"被其他线程"抢去"了
        if ((sc = sizeCtl) < 0)
            Thread.yield(); // lost initialization race; just spin
        // CAS 一下,将 sizeCtl 设置为 -1,代表抢到了锁
        else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
            try {
                if ((tab = table) == null || tab.length == 0) {
                    // DEFAULT_CAPACITY 默认初始容量是 16
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    // 初始化数组,长度为 16 或初始化时提供的长度
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                    // 将这个数组赋值给 table,table 是 volatile 的
                    table = tab = nt;
                    // 如果 n 为 16 的话,那么这里 sc = 12
                    // 其实就是 0.75 * n
                    sc = n - (n >>> 2);
                }
            } finally {
                // 设置 sizeCtl 为 sc,我们就当是 12 吧
                sizeCtl = sc;
            }
            break;
        }
    }
    return tab;
}
View Code

这个比较简单,主要就是初始化一个合适大小的数组,然后会设置 sizeCtl,就是让sizeCtl变成一个类似threshold的角色,给扩容的时候做判断用的。

初始化方法中的并发问题是通过对 sizeCtl 进行一个 CAS 操作来控制的。

然后就是关于扩容、transfer的操作了,这个是真滴难懂,代码还长,我暂时先记一下它的思路吧。

关于扩容的思路(来自:https://blog.csdn.net/varyall/article/details/81283231)

jdk8中,采用多线程扩容。整个扩容过程,通过CAS设置sizeCtl,transferIndex等变量协调多个线程进行并发扩容。

先介绍几个相关的field:

nextTable:扩容时,把table中的元素迁移至nextTable,扩容时非空。

sizeCtl:上面讲了,这里放个图:

transferIndex:扩容索引,表示已经分配给扩容线程的table数组索引位置。主要用来协调多个线程,并发安全地获取迁移任务(hash桶)。

其实说白了,就是多个线程来一起扩容,每个线程要做的,就是把当前transferIndex到transferIndex - stride个桶的数据迁移到新table中去。(transferIndex一开始在数组尾巴那,往前挪)

看两个图理解下:

  1 在扩容之前,transferIndex 在数组的最右边 。此时有一个线程发现已经到达扩容阈值,准备开始扩容。

  2 扩容线程,在迁移数据之前,首先要将transferIndex右移(以cas的方式修改transferIndex=transferIndex-stride(要迁移hash桶的个数)),获取迁移任务。每个扩容线程都会通过for循环+CAS的方式设置transferIndex,因此可以确保多线程扩容的并发安全。

forwardingNode:扩容索引,表示已经分配给扩容线程的table数组索引位置。主要用来协调多个线程,并发安全地获取迁移任务(hash桶)。简单地说,迁移完的桶就会被设为这个结点,这个结点的hash值是-1,也就是常量MOVED的值。

看看扩容过程:

  1. 线程执行Put,发现容量要扩容了,这个时候的transferIndex = table.length = 32。
  2. 扩容线程A 以cas的方式修改transferindex=31-16=16 ,然后按照降序迁移table[31]--table[16]这个区间的hash桶。
  3. 迁移hash桶时,会将桶内的链表或者红黑树,按照一定算法,拆分成2份,将其插入nextTable[i]和nextTable[i+n](n是table数组的长度)。 迁移完毕的hash桶,会被设置成ForwardingNode节点,以此告知访问此桶的其他线程,此节点已经迁移完毕。
  4. 此时,线程2访问到了ForwardingNode节点,如果线程2执行的put或remove等写操作,那么就会先帮其扩容。如果线程2执行的是get等读方法,则会调用ForwardingNode的find方法,去nextTable里面查找相关元素。

  5. 如果准备加入扩容的线程,发现以下情况,放弃扩容,直接返回。

    •   发现transferIndex=0,即所有node均已分配
    •   发现扩容线程已经达到最大扩容线程数

总之扩容就是:多线程无锁扩容的关键就是通过CAS设置sizeCtl与transferIndex变量,协调多个线程对table数组中的node进行迁移。

get的分析

public V get(Object key) {
    Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
    int h = spread(key.hashCode());
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (e = tabAt(tab, (n - 1) & h)) != null) {
        // 判断头结点是否就是我们需要的节点
        if ((eh = e.hash) == h) {
            if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                return e.val;
        }
        // 如果头结点的 hash 小于 0,说明 正在扩容,或者该位置是红黑树
        else if (eh < 0)
            // 参考 ForwardingNode.find(int h, Object k) 和 TreeBin.find(int h, Object k)
            return (p = e.find(h, key)) != null ? p.val : null;
 
        // 遍历链表
        while ((e = e.next) != null) {
            if (e.hash == h &&
                ((ek = e.key) == key || (ek != null && key.equals(ek))))
                return e.val;
        }
    }
    return null;
}
View Code

get 方法从来都是最简单的,这里也不例外:

  1. 计算 hash 值
  2. 根据 hash 值找到数组对应位置: (n – 1) & h
  3. 根据该位置处结点性质进行相应查找
    • 如果该位置为 null,那么直接返回 null 就可以了
    • 如果该位置处的节点刚好就是我们需要的,返回该节点的值即可
    • 如果该位置节点的 hash 值小于 0,说明正在扩容(-1),或者是红黑树(-2),就用find来解决get获取。(扩容的话如果为-1,说明结点转移了,就去nextTable里面去get)
    • 如果以上 3 条都不满足,那就是链表,进行遍历比对即可

四、参考文章:

http://www.importnew.com/28263.html——《Java7/8 中的 HashMap 和 ConcurrentHashMap 全解析》本文主要是根据这篇的主线来转载的。

https://www.cnblogs.com/throwable/p/9139947.html——《JAVA中神奇的双刃剑--Unsafe》

https://www.cnblogs.com/seyer/p/5819904.html——网上很多讲解都这个版本

https://blog.csdn.net/varyall/article/details/81283231——《ConcurrentHashMap源码分析(JDK8) 扩容实现机制》这篇讲扩容机制的,思路讲得很清晰了,也有关键源码的分析。

猜你喜欢

转载自www.cnblogs.com/wangshen31/p/10464488.html