RBF、GRNN、PNN神经网络学习

首先要搞清楚的RBF神经网络和BP神经网络的区别:
RBF神经网络一般有三层,输入层、中间层计算输入x矢量和样本矢量c欧式距离的RBF值,输出层算它们的线性组合。不像BP神经网络通过后向传播改变权重,RBF神经网络隐含层和输入层的连接权重是有固定算式(欧式距离)的。

在这里插入图片描述
简单地说,就是某个测试集样本p和某个训练集样本越接近,即欧氏距离越小,那么在RBF作用后输出的值就越大。即RBF使样本点只被附近(圈内)的输入激活(权重大)。如下图。
在这里插入图片描述
代码部分用的是matlab公开课关于预测汽油辛烷值的例子:

load spectra_data.mat

%%
% 2. 随机产生训练集和测试集
temp = randperm(size(NIR,1));
% 训练集——50个样本
P_train = NIR(temp(1:50),:)';
T_train = octane(temp(1:50),:)';
% 测试集——10个样本
P_test = NIR(temp(51:end),:)';
T_test = octane(temp(51:end),:)';
N = size(P_test,2);

%% III. RBF神经网络创建及仿真测试
%%
% 1. 创建网络
net = newrbe(P_train,T_train,30);

%%
% 2. 仿真测试
T_sim = sim(net,P_test);

%% IV. 性能评价
%%
% 1. 相对误差error
error = abs(T_sim - T_test)./T_test;

%%
% 2. 决定系数R^2
R2 = (N * sum(T_sim .* T_test) - sum(T_sim) * sum(T_test))^2 / ((N * sum((T_sim).^2) - (sum(T_sim))^2) * (N * sum((T_test).^2) - (sum(T_test))^2)); 

%%
% 3. 结果对比
result = [T_test' T_sim' error']

%% V. 绘图
figure
plot(1:N,T_test,'b:*',1:N,T_sim,'r-o')
legend('真实值','预测值')
xlabel('预测样本')
ylabel('辛烷值')
string = {'测试集辛烷值含量预测结果对比';['R^2=' num2str(R2)]};
title(string)

newrbe(P_train,T_train,30)中最后一个spread这个参数越大,RBF图像越平滑,RBF的输出差距不大,则所有输入的作用都会被减弱。

GRNN(广义回归神经网络)

GRNN神经网络和RBF神经网络的区别是,去掉了隐含层和输出层的权值连接,这里的 LW2.1直接由输出矩阵代替(RBF LW2.1是输出矩阵经过加权和得到),并在隐含层与输出层之间和激活函数进行点乘。
在这里插入图片描述

PNN(概率神经网络)

输入层和隐含层与RBF神经网络一致,不同点是最后的输出环节使用了一个竞争函数
在这里插入图片描述

代码实例(鸢尾花的种类识别)

样本数量为150个,每个有4个特征变量。分别用GRNN和PNN来学习判断鸢尾花的种类,分为3类。

%% I. 清空环境变量
clear all
clc

%% II. 训练集/测试集产生
%%
% 1. 导入数据
load iris_data.mat

%%
% 2 随机产生训练集和测试集
P_train = [];
T_train = [];
P_test = [];
T_test = [];
for i = 1:3
    temp_input = features((i-1)*50+1:i*50,:);
    temp_output = classes((i-1)*50+1:i*50,:);
    n = randperm(50);
    % 训练集——120个样本
    P_train = [P_train temp_input(n(1:40),:)'];
    T_train = [T_train temp_output(n(1:40),:)'];
    % 测试集——30个样本
    P_test = [P_test temp_input(n(41:50),:)'];
    T_test = [T_test temp_output(n(41:50),:)'];
end

%% III. 模型建立 
result_grnn = [];
result_pnn = [];
time_grnn = [];
time_pnn = [];
for i = 1:4
    for j = i:4
        p_train = P_train(i:j,:);
        p_test = P_test(i:j,:);
       %% 
        % 1. GRNN创建及仿真测试
        t = cputime;
        % 创建网络
        net_grnn = newgrnn(p_train,T_train);
        % 仿真测试
        t_sim_grnn = sim(net_grnn,p_test);
        T_sim_grnn = round(t_sim_grnn);
        t = cputime - t;
        time_grnn = [time_grnn t];
        result_grnn = [result_grnn T_sim_grnn'];
       %%
        % 2. PNN创建及仿真测试
        t = cputime;
        Tc_train = ind2vec(T_train);
        % 创建网络
        net_pnn = newpnn(p_train,Tc_train);
        % 仿真测试
        Tc_test = ind2vec(T_test);
        t_sim_pnn = sim(net_pnn,p_test);
        T_sim_pnn = vec2ind(t_sim_pnn);
        t = cputime - t;
        time_pnn = [time_pnn t];
        result_pnn = [result_pnn T_sim_pnn'];
    end
end

%% IV. 性能评价
%%
% 1. 正确率accuracy
accuracy_grnn = [];
accuracy_pnn = [];
time = [];
for i = 1:10
    accuracy_1 = length(find(result_grnn(:,i) == T_test'))/length(T_test);
    accuracy_2 = length(find(result_pnn(:,i) == T_test'))/length(T_test);
    accuracy_grnn = [accuracy_grnn accuracy_1];
    accuracy_pnn = [accuracy_pnn accuracy_2];
end

%%
% 2. 结果对比
result = [T_test' result_grnn result_pnn]
accuracy = [accuracy_grnn;accuracy_pnn]
time = [time_grnn;time_pnn]

%% V. 绘图
figure(1)
plot(1:30,T_test,'bo',1:30,result_grnn(:,4),'r-*',1:30,result_pnn(:,4),'k:^')
grid on
xlabel('测试集样本编号')
ylabel('测试集样本类别')
string = {'测试集预测结果对比(GRNN vs PNN)';['正确率:' num2str(accuracy_grnn(4)*100) '%(GRNN) vs ' num2str(accuracy_pnn(4)*100) '%(PNN)']};
title(string)
legend('真实值','GRNN预测值','PNN预测值')
figure(2)
plot(1:10,accuracy(1,:),'r-*',1:10,accuracy(2,:),'b:o')
grid on
xlabel('模型编号')
ylabel('测试集正确率')
title('10个模型的测试集正确率对比(GRNN vs PNN)')
legend('GRNN','PNN')
figure(3)
plot(1:10,time(1,:),'r-*',1:10,time(2,:),'b:o')
grid on
xlabel('模型编号')
ylabel('运行时间(s)')
title('10个模型的运行时间对比(GRNN vs PNN)')
legend('GRNN','PNN')

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

某些函数用法总结:

ind2vec():构建稀疏矩阵。

在这里插入图片描述

猜你喜欢

转载自blog.csdn.net/qq_21567935/article/details/85865256