CF1106F Lunar New Year and a Recursive Sequence 原根、矩阵快速幂、高次剩余、BSGS

传送门


好久没写数论题了写一次调了1h

首先发现递推式是一个乘方的形式,线性递推和矩阵快速幂似乎都做不了,那么是否能够把乘方运算变成加法运算和乘法运算呢?

使用原根!学过\(NTT\)的都知道\(998244353\)的原根\(G=3\)

使用原根之后,可以得到一个等价的新递推式:\(G^{g_i} = \prod\limits _ {j=1}^k G^{g_{i - j} \times b_j} \mod 998244353(G^{g_i} \equiv f_i\mod 998244353)\),它等价于\(g_i = \sum\limits_{j=1}^k g_{i-j} \times b_j \mod 998244352\)。这样就可以矩阵快速幂得出当\(f_k\)等于某个值\(G^p\)\(f_n\)的值了。

可现在知道的是\(f_n\)的值,不知道\(f_k\)的值。

考虑:令\(G_k=1\),得到\(G_n\)的值\(x\),那么可以知道\(f_k^x \equiv f_n \mod 998244353\)

这是一个模意义下的高次剩余方程,要怎么求解呢?

同样使用原根。设\(f_{k} = G^b \mod 998244353\),通过\(BSGS\)求出\(f_n = G^y \mod 998244353\),那么原式变成\(G^{bx} \equiv G^y \mod 998244353\),即\(bx \equiv y \mod 998244352\)。逆元求解方程得到\(b\),也就得到了\(f_k\)

一些打比赛时被坑到的点:

\(998244352 = 2^{23} \times 7 \times 17\),求逆元要用欧拉定理或者拓展欧几里得

\(998244351 \times 998244351 \times 100 > 2^{63}\),这意味着矩阵相乘不能算完再一起取模

#include<bits/stdc++.h>
#define int long long
//This code is written by Itst
using namespace std;

inline int read(){
    int a = 0;
    char c = getchar();
    bool f = 0;
    while(!isdigit(c)){
        if(c == '-')
            f = 1;
        c = getchar();
    }
    while(isdigit(c)){
        a = (a << 3) + (a << 1) + (c ^ '0');
        c = getchar();
    }
    return f ? -a : a;
}

const int MOD = 998244353 , G = 3;
int K;
struct matrix{
    int a[100][100];
    int* operator [](int x){return a[x];}
    matrix(){memset(a , 0 , sizeof(a));}
    matrix operator *(matrix b){
        matrix c;
        for(int i = 0 ; i < K ; ++i)
            for(int j = 0 ; j < K ; ++j)
                for(int k = 0 ; k < K ; ++k)
                    c[i][j] = (c[i][j] + a[i][k] * b[k][j]) % (MOD - 1);
        return c;
    }
}S , T;

inline int gcd(int a , int b){
    int r = a % b;
    while(r){
        a = b;
        b = r;
        r = a % b;
    }
    return b;
}

inline int poww(int a , int b , int mod = MOD){
    int times = 1;
    while(b){
        if(b & 1)
            times = times * a % mod;
        a = a * a % mod;
        b >>= 1;
    }
    return times;
}

map < int , int > Hash;

inline int BSGS(int x){
    int t = sqrt(MOD) + 1 , times = x;
    for(int i = 0 ; i < t ; i++){
        Hash[times] = i;
        times = times * G % MOD;
    }
    times = poww(G , t);
    int now = times;
    for(int i = 1 ; i <= t + 1 ; i++){
        if(Hash.count(now)){
            return i * t - Hash[now];
        }
        now = now * times % MOD;
    }
    return -1;
}

int phi(int x){
    int times = x;
    for(int i = 2 ; i * i <= x ; ++i){
        if(x % i == 0){
            times = times / i * (i - 1);
            while(x % i == 0)
                x /= i;
        }
    }
    if(x - 1)
        times = times / x * (x - 1);
    return times;
} 

signed main(){
    #ifndef ONLINE_JUDGE
    //freopen("in" , "r" , stdin);
    //freopen("out" , "w" , stdout);
    #endif
    K = read();
    for(int i = 0 ; i < K ; ++i)
        T[K - i - 1][K - 1] = read() % (MOD - 1);
    int N = read() - K;
    int t = BSGS(read());
    for(int i = 0 ; i + 1 < K ; ++i)
        T[i + 1][i] = 1;
    S[0][K - 1] = 1;
    while(N){
        if(N & 1)
            S = S * T;
        T = T * T;
        N >>= 1;
    }
    int cur = S[0][K - 1] , p = gcd(cur , MOD - 1);
    if(t % p != 0)
        puts("-1");
    else{
        t /= p;
        cur /= p;
        int mod = (MOD - 1) / p; 
        cout << poww(G , poww(cur , phi(mod) - 1 , mod) * t % mod);
    }
    return 0;
}

猜你喜欢

转载自www.cnblogs.com/Itst/p/10344913.html