用python浅谈函数式编程

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u014665013/article/details/85725803

整理资料发现一个特别好的编程思想,顺便还解锁了很多实用函数~

1.函数式编程的抽象解释

当我们说起函数式编程来说,我们会看到如下函数式编程的长相:
函数式编程的特点

  • immutable data 不可变数据:像Clojure一样,默认上变量是不可变的,如果你要改变变量,你需要把变量copy出去修改。这样一来,可以让你的程序少很多Bug。因为,程序中的状态不好维护,在并发的时候更不好维护。(你可以试想一下如果你的程序有个复杂的状态,当以后别人改你代码的时候,是很容易出bug的,在并行中这样的问题就更多了)
  • first class functions:这个技术可以让你的函数就像变量一样来使用。也就是说,你的函数可以像变量一样被创建,修改,并当成变量一样传递,返回或是在函数中嵌套函数。这个有点像Javascript的Prototype(参看Javascript的面向对象编程)
  • 尾递归优化:我们知道递归的害处,那就是如果递归很深的话,stack受不了,并会导致性能大幅度下降。所以,我们使用尾递归优化技术——每次递归时都会重用stack,这样一来能够提升性能,当然,这需要语言或编译器的支持。Python就不支持。

函数式编程的技术

  • map & reduce :这个技术不用多说了,函数式编程最常见的技术就是对一个集合做Map和Reduce操作。这比起过程式的语言来说,在代码上要更容易阅读。(传统过程式的语言需要使用for/while循环,然后在各种变量中把数据倒过来倒过去的)这个很像C++中的STL中的foreach,find_if,count_if之流的函数的玩法。
  • pipeline:这个技术的意思是,把函数实例成一个一个的action,然后,把一组action放到一个数组或是列表中,然后把数据传给这个action list,数据就像一个pipeline一样顺序地被各个函数所操作,最终得到我们想要的结果。
  • recursing 递归 :递归最大的好处就简化代码,他可以把一个复杂的问题用很简单的代码描述出来。注意:递归的精髓是描述问题,而这正是函数式编程的精髓。
  • currying:把一个函数的多个参数分解成多个函数, 然后把函数多层封装起来,每层函数都返回一个函数去接收下一个参数这样,可以简化函数的多个参数。在C++中,这个很像STL中的bind_1st或是bind2nd。
  • higher order function 高阶函数:所谓高阶函数就是函数当参数,把传入的函数做一个封装,然后返回这个封装函数。现象上就是函数传进传出,就像面向对象对象满天飞一样。

函数式编程的好处

  • parallelization 并行:所谓并行的意思就是在并行环境下,各个线程之间不需要同步或互斥。
  • lazy evaluation 惰性求值:这个需要编译器的支持。表达式不在它被绑定到变量之后就立即求值,而是在该值被取用的时候求值,也就是说,语句如x:=expression; (把一个表达式的结果赋值给一个变量)明显的调用这个表达式被计算并把结果放置到 x 中,但是先不管实际在 x 中的是什么,直到通过后面的表达式中到 x 的引用而有了对它的值的需求的时候,而后面表达式自身的求值也可以被延迟,最终为了生成让外界看到的某个符号而计算这个快速增长的依赖树。(说的就是python中的generator?)
  • determinism 确定性:所谓确定性的意思就是像数学那样 f(x) = y ,这个函数无论在什么场景下,都会得到同样的结果,这个我们称之为函数的确定性。而不是像程序中的很多函数那样,同一个参数,却会在不同的场景下计算出不同的结果。所谓不同的场景的意思就是我们的函数会根据一些运行中的状态信息的不同而发生变化。

2.函数式编程的事例解释

非函数式编程 VS 函数式编程

int cnt;
void increment(){
    cnt++;
}

//函数式
int increment(int cnt){
    return cnt+1;
}

这个例子就是函数式编程的准则:不依赖于外部的数据,而且也不改变外部数据的值,而是返回一个新的值给你

再看个例子:

def inc(x):
    def incx(y):
        return x+y
    return incx
 
inc2 = inc(2)
inc5 = inc(5)
 
print inc2(5) # 输出 7
print inc5(5) # 输出 10

我们可以看到上面那个例子inc()函数返回了另一个函数incx(),于是我们可以用inc()函数来构造各种版本的inc函数,比如:inc2()和inc5()。这个技术其实就是上面所说的Currying技术。从这个技术上,你可能体会到函数式编程的理念:把函数当成变量来用,关注于描述问题而不是怎么实现 (这算是函数式编程最简单易懂的解释了吧~),这样可以让代码更易读。

3.函数式编程的巧用淫技

3.1 map & reduce

在函数式编程中,我们不应该用循环迭代的方式,我们应该用更为高级的方法,如下所示的Python代码:

name_len = map(len, ["hao", "chen", "coolshell"])
print name_len
# 输出 [3, 4, 9]

你可以看到这样的代码很易读,因为,这样的代码是在描述要干什么,而不是怎么干

再来看一个Python代码的例子:

test = ["hao", "chen", "coolshell"]
upperName = map(lambda item : item.upper(),test )
print (list(upperName))
# 输出 ['HAO', 'CHEN', 'COOLSHELL']

titleName = map(lambda item : item.title(),test)
print (list(titleName))
#输出 ['Hao', 'Chen', 'Coolshell']

print(test)
#test的值仍然没有改变

Python的那个例子中我们可以看到,我们写义了一个函数toUpper,这个函数没有改变传进来的值,只是把传进来的值做个简单的操作,然后返回。然后,我们把其用在map函数中,就可以很清楚地描述出我们想要干什么。而不会去理解一个在循环中的怎么实现的代码,最终在读了很多循环的逻辑后才发现原来是这个或那个意思。 下面,我们看看描述实现方法的过程式编程是怎么玩的(看上去是不是不如函数式的清晰?):

upname =['HAO', 'CHEN', 'COOLSHELL']
lowname =[] 
for i in range(len(upname)):
    lowname.append( upname[i].lower() )

我们再来看看reduce怎么玩?(下面的lambda表达式中有两个参数,也就是说每次从列表中取两个值,计算结果后把这个值再放回去,下面的表达式相当于:((((1+2)+3)+4)+5) )

print reduce(lambda x, y: x+y, [1, 2, 3, 4, 5])
# 输出 15

Python中的除了map和reduce外,还有一些别的如filter, find, all, any的函数做辅助(其它函数式的语言也有),可以让你的代码更简洁,更易读。 我们再来看一个比较复杂的例子:

num =[2, -5, 9, 7, -2, 5, 3, 1, 0, -3, 8]
positive_num_cnt = 0
positive_num_sum = 0
for i in range(len(num)):
    if num[i] > 0:
        positive_num_cnt += 1
        positive_num_sum += num[i]
 
if positive_num_cnt > 0:
    average = positive_num_sum / positive_num_cnt
    
print (average)
# 输出 5

如果用函数式编程,这个例子可以写成这样:

positive_num = filter(lambda x: x>0, num)
average = reduce(lambda x,y: x+y, positive_num) / len( positive_num )

同理,最大值的函数式编程是这样式儿的:

test = [1,2,3,4,5,6,7,8,9,10]
print(max(test))
print(test.index(max(test)))

我们可以看到,函数式编程有如下好处:

  1. 代码更简单了。
  2. 数据集,操作,返回值都放到了一起。
  3. 你在读代码的时候,没有了循环体,于是就可以少了些临时变量,以及变量倒来倒去逻辑。
  4. 你的代码变成了在描述你要干什么,而不是怎么去干。

3.2 Pipline

pipeline 管道借鉴于Unix Shell的管道操作——把若干个命令串起来,前面命令的输出成为后面命令的输入,如此完成一个流式计算。(注:管道绝对是一个伟大的发明,他的设哲学就是KISS – 让每个功能就做一件事,并把这件事做到极致,软件或程序的拼装会变得更为简单和直观。这个设计理念影响非常深远,包括今天的Web Service,云计算,以及大数据的流式计算等等)
比如,我们如下的shell命令:

ps auwwx | awk '{print $2}' | sort -n | xargs echo

如果我们抽象成函数式的语言,就像下面这样:

xargs(  echo, sort(n, awk('print $2', ps(auwwx)))  )
#或是这样
pids = for_each(result, [ps_auwwx, awk_p2, sort_n, xargs_echo])

那pipline是怎么玩的呢?
看一个如下的程序,这个程序的process()有三个步骤:

  • 找出偶数。
  • 乘以3
  • 转成字符串返回
class Pipe(object):
    def __init__(self, func):
        self.func = func
 
    def __ror__(self, other):
        def generator():
            for obj in other:
                if obj is not None:
                    yield self.func(obj)
        return generator()
 
@Pipe
def even_filter(num):
    return num if num % 2 == 0 else None
 
@Pipe
def multiply_by_three(num):
    return num*3
 
@Pipe
def convert_to_string(num):
    return 'The Number: %s' % num
 
@Pipe
def echo(item):
    print item
    return item
 
def force(sqs):
    for item in sqs: pass
 
nums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
 
force(nums | even_filter | multiply_by_three | convert_to_string | echo)

然后我们用map reduce 再实现一下:

>>>list(map(lambda x:"%s"%(x*3),filter( lambda x : x%2==0, [1,2,3,4,5])))

参考文献:

猜你喜欢

转载自blog.csdn.net/u014665013/article/details/85725803
今日推荐