二分查找法的实现和应用汇总

到目前位置,似乎我们学到的算法中,时间复杂度是O(log n),好像就数二分查找法,其他的诸如排序算法都是 O(n log n)或者O(n2)。但是也正是因为有二分的 O(log n), 才让很多 O(n2)缩减到只要O(n log n)。

关于二分查找法

二分查找法主要是解决在“一堆数中找出指定的数”这类问题。

而想要应用二分查找法,这“一堆数”必须有一下特征:

  • 存储在数组中
  • 有序排列

所以如果是用链表存储的,就无法在其上应用二分查找法了。

至于是顺序递增排列还是递减排列,数组中是否存在相同的元素都不要紧。不过一般情况,我们还是希望并假设数组是递增排列,数组中的元素互不相同。

二分查找法的基本实现

二分查找法属于“分治法”,分治法基本都可以用递归来实现的,二分查找法的递归实现如下:

int binarysearch(int array[], int low, int high, int key){
	if (low > high) return -1;

	int mid = (low + high) / 2;
	if (array[mid]> key)
		return    binarysearch(array, low, mid - 1, key);
	else if (array[mid]< key)
		return    binarysearch(array, mid + 1, high, key);

	//if (midValue == target)
	return mid;
}

因为二分的递归其实是尾递归,它不关心递归前的所有信息。所以它的非递归实现甚至可以不用栈

int bsearchWithoutRecursion(int array[], int low, int high, int target){
	while (low <= high){
		int mid = (low + high) / 2;
		if (array[mid] > target)
			high = mid - 1;
		else if (array[mid] < target)
			low = mid + 1;
		else //find the target
			return mid;
	}
	//the array does not contain the target
	return -1;
}

只用小于比较(<)实现二分查找法

在前面的二分查找实现中,我们既用到了小于比较(<)也用到了大于比较(>),也可能还需要相等比较(==)。

而实际上我们只需要一个小于比较(<)就可以。因为错逻辑上讲a>b和b<a应该是有相当的逻辑值;而a==b则是等价于 !((a<b)||(b<a)),也就是说a既不小于b,也不大于b。

当然在程序的世界里, 这种关系逻辑其实并不是完全正确。另外,C++还允许对对象进行运算符的重载,因此开发人员完全可以随意设计和实现这些关系运算符的逻辑值。

不过在整型数据面前,这些关系运算符之间的逻辑关系还是成立的,而且在开发过程中,我们还是会遵循这些逻辑等价关系来重载关系运算符。

干嘛要搞得那么羞涩,只用一个关系运算符呢?因为这样可以为二分查找法写一个template,又能减少对目标对象的要求。模板会是这样的:

template <typename T, typename V>
inline int BSearch(T& array, int low, int high, V& target){
	while (!(high < low)){
		int mid = (low + high) / 2;
		if (target < array[mid])
			high = mid - 1;
		else if (array[mid] < target)
			low = mid + 1;
		else //find the target
			return mid;
	}
	//the array does not contain the target
	return -1;
}
我们只需要求target的类型V有重载 小于运算符就可以。而对于V的集合类型T,则需要有 []运算符的重载。当然其内部实现必须是O(1)的复杂度,否则也就失去了二分查找的效率。


用二分查找法找寻边界值

之前的都是在数组中找到一个数要与目标相等,如果不存在则返回-1。我们也可以用二分查找法找寻边界值,也就是说在有序数组中找到“正好大于(小于)目标数”的那个数。

用数学的表述方式就是:

     在集合中找到一个大于(小于)目标数t的数x,使得集合中的任意数要么大于(小于)等于x,要么小于(大于)等于t。

举例来说:给予数组和目标数

int array = {2, 3, 5, 7, 11, 13, 17};
int target = 7;
那么上界值应该是11,因为它“刚刚好”大于7;下 界值则是5,因为它“刚刚好”小于7

用二分查找寻找上界

//Find the fisrt element, whose value is larger than target, in a sorted array 
int BSearchUpperBound(int array[], int low, int high, int target){
	//Array is empty or target is larger than any every element in array 
	if (low > high || target >= array[high]) return -1;

	int mid;
	while (high > low){
		mid = (low + high) / 2;
		if (array[mid] > target)
			high = mid;
		else
			low = mid + 1;
	}

	return mid;
}

与精确查找不同之处在于,精确查找分成三类:大于小于等于(目标数)。而界限查找则分成了两类:大于不大于

如果当前找到的数大于目标数时,它可能就是我们要找的数,所以需要保留这个索引,也因此if (array[mid] > target)时 high=mid; 而没有减1。

用二分查找寻找下界

//Find the last element, whose value is less than target, in a sorted array 
int BSearchLowerBound(int array[], int low, int high, int target){
	//Array is empty or target is less than any every element in array
	if (high < low || target <= array[low]) return -1;

	int mid; //make mid lean to large side
	while (low < high){
		mid = (low + high + 1) / 2;
		if (array[mid] < target)
			low = mid;
		else
			high = mid - 1;
	}

	return mid;
}

下届寻找基本与上届相同,需要注意的是在取中间索引时,使用了向上取整。若同之前一样使用向下取整,那么当low == high-1,而array[low] 又小于 target时就会形成死循环。因为low无法往上爬超过high。

这两个实现都是找严格界限,也就是要大于或者小于。如果要找松散界限,也就是找到大于等于或者小于等于的值(即包含自身),只要对代码稍作修改就好了:

去掉判断数组边界的等号:

target >= array[high]改为 target > array[high]

在与中间值的比较中加上等号:

array[mid] > target改为array[mid] >= target

用二分查找法找寻区域

之前我们使用二分查找法时,都是基于数组中的元素各不相同。假如存在重复数据,而数组依然有序,那么我们还是可以用二分查找法判别目标数是否存在。不过,返回的index就只能是随机的重复数据中的某一个。

此时,我们会希望知道有多少个目标数存在。或者说我们希望数组的区域。

结合前面的界限查找,我们只要找到目标数的严格上届和严格下届,那么界限之间(不包括界限)的数据就是目标数的区域了。

//return type: pair<int, int>
//the fisrt value indicate the begining of range,
//the second value indicate the end of range.
//If target is not find, (-1,-1) will be returned
pair<int, int> SearchRange(int A[], int n, int target){
	pair<int, int> r(-1, -1);
	if (n <= 0) return r;

	int lower = BSearchLowerBound(A, 0, n - 1, target);
	lower = lower + 1; //move to next element

	if (A[lower] == target)
		r.first = lower;
	else //target is not in the array
		return r;

	int upper = BSearchUpperBound(A, 0, n - 1, target);
	upper = upper < 0 ? (n - 1) : (upper - 1); //move to previous element

											   //since in previous search we had check whether the target is
											   //in the array or not, we do not need to check it here again
	r.second = upper;

	return r;
}

它的时间复杂度是两次二分查找所用时间的和,也就是O(log n) + O(log n),最后还是O(log n)。


在轮转后的有序数组上应用二分查找法

之前我们说过二分法是要应用在有序的数组上,如果是无序的,那么比较和二分就没有意义了。

不过还有一种特殊的数组上也同样可以应用,那就是“轮转后的有序数组(Rotated Sorted Array)”。它是有序数组,取期中某一个数为轴,将其之前的所有数都轮转到数组的末尾所得。比如{7, 11, 13, 17, 2, 3, 5}就是一个轮转后的有序数组。非严格意义上讲,有序数组也属于轮转后的有序数组——我们取首元素作为轴进行轮转。

下边就是二分查找法在轮转后的有序数组上的实现(假设数组中不存在相同的元素)

int SearchInRotatedSortedArray(int array[], int low, int high, int target){
	while (low <= high){
		int mid = (low + high) / 2;
		if (target < array[mid])
			if (array[mid] < array[high])	//the higher part is sorted
				high = mid - 1;	 //the target would only be in lower part
			else	//the lower part is sorted
				if (target < array[low])	//the target is less than all elements in low part
					low = mid + 1;
				else
					high = mid - 1;

		else if (array[mid] < target)
			if (array[low] < array[mid])	// the lower part is sorted
				low = mid + 1;	//the target would only be in higher part
			else	//the higher part is sorted
				if (array[high] < target)	//the target is larger than all elements in higher part
					high = mid - 1;
				else
					low = mid + 1;
		else	//if(array[mid] == target)
			return mid;
	}

	return -1;
}

对比普通的二分查找法,为了确定目标数会落在二分后的那个部分,我们需要更多的判定条件。但是我们还是实现了O(log n)的目标。


二分查找法的缺陷

二分查找法的O(log n)让它成为十分高效的算法。不过它的缺陷却也是那么明显的。就在它的限定之上:

必须有序,我们很难保证我们的数组都是有序的。当然可以在构建数组的时候进行排序,可是又落到了第二个瓶颈上:它必须是数组

数组读取效率是O(1),可是它的插入和删除某个元素的效率却是O(n)。因而导致构建有序数组变成低效的事情。

解决这些缺陷问题更好的方法应该是使用二叉查找树了,最好自然是自平衡二叉查找树了,自能高效的(O(n log n))构建有序元素集合,又能如同二分查找法一样快速(O(log n))的搜寻目标数。



猜你喜欢

转载自blog.csdn.net/ParadiseHeaven/article/details/79200157
今日推荐