放缩法【初级中阶辅导】

一、放缩法:

二、常见的放缩公式:

三、和放缩法常常相关联的方法:

四、典例剖析:

有空再编辑。

是学生感觉比较难的数学内容之一,记住以下的常见变形是很有效的。

由于\((n-1)(n-1)<n(n-1)<n^2<n(n+1)<(n+1)(n+1)\)

故由倒数法则得到

\(\cfrac{1}{(n+1)(n+1)}<\cfrac{1}{n(n+1)}<\cfrac{1}{n^2}<\cfrac{1}{n(n-1)}<\cfrac{1}{(n-1)(n-1)}\)

\(\cfrac{1}{(n+1)(n+1)}<\cfrac{1}{(n-1)(n+1)}<\cfrac{1}{n(n-1)}\)

\(\cfrac{1}{(2n-1)(2n+1)}<\cfrac{1}{2n(2n-1)}\);等等。

\(\fbox{例1}\)(2017宝鸡中学第一次月考第21题改编)

已知函数满足\(f(n)-f(n-1)=4(n-1),n\in N^*\)

①求\(f(n)\)的不等式;

分析:如果能意识到\(a_n=f(n)\),则应该想到用累加法求解,得到\(f(n)=2n^2-2n+1\)

②求证:\(\cfrac{1}{f(1)}+\cfrac{1}{f(2)}+\cfrac{1}{f(3)}+\cdots+\cfrac{1}{f(n)}<\cfrac{3}{2}\)

证明:由于\(\cfrac{1}{f(n)}=\cfrac{1}{2n^2-2n+1}<\cfrac{1}{2n^2-2n}=\cfrac{1}{2}(\cfrac{1}{n-1}-\cfrac{1}{n})\)

第一项保持不动,\(\cfrac{1}{f(1)}=1\)

\(\cfrac{1}{f(2)}<\cfrac{1}{2}(\cfrac{1}{1}-\cfrac{1}{2})\)

\(\cfrac{1}{f(3)}<\cfrac{1}{2}(\cfrac{1}{2}-\cfrac{1}{3})\)

\(\cdots\)

\(\cfrac{1}{f(n)}<\cfrac{1}{2}(\cfrac{1}{n-1}-\cfrac{1}{n})\)

\(\cfrac{1}{f(1)}+\cfrac{1}{f(2)}+\cfrac{1}{f(3)}+\cdots+\cfrac{1}{f(n)}\)

\(=1+\cfrac{1}{2}[(1-\cfrac{1}{2})+(\cfrac{1}{2}-\cfrac{1}{3})+\cdots+(\cfrac{1}{n-1}-\cfrac{1}{n})]\)

\(=1+\cfrac{1}{2}(1-\cfrac{1}{n})=\cfrac{3}{2}-\cfrac{1}{2n}<\cfrac{3}{2}\)

猜你喜欢

转载自www.cnblogs.com/wanghai0666/p/5867164.html