google机器学习框架tensorflow学习笔记(八)

合成特质和离群值

学习目标:

  • 创建一个合成特征,即另外两个特征的比例
  • 将此新特征用作线性回归模型的输入
  • 通过识别和截取(移除)输入数据中的离群值来提高模型的有效性

我们来回顾下之前的“使用 TensorFlow 的基本步骤”练习中的模型。

首先,我们将加利福尼亚州住房数据导入   Pandas   DataFrame  中:
import math

from IPython import display
from matplotlib import cm
from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import sklearn.metrics as metrics
import tensorflow as tf
from tensorflow.python.data import Dataset

tf.logging.set_verbosity(tf.logging.ERROR)
pd.options.display.max_rows = 10
pd.options.display.float_format = '{:.1f}'.format

california_housing_dataframe = pd.read_csv("https://storage.googleapis.com/mledu-datasets/california_housing_train.csv", sep=",")

california_housing_dataframe = california_housing_dataframe.reindex(
    np.random.permutation(california_housing_dataframe.index))
california_housing_dataframe["median_house_value"] /= 1000.0
california_housing_dataframe


接下来,我们将设置输入函数,并针对模型训练来定义该函数:
def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):
    """Trains a linear regression model of one feature.
  
    Args:
      features: pandas DataFrame of features
      targets: pandas DataFrame of targets
      batch_size: Size of batches to be passed to the model
      shuffle: True or False. Whether to shuffle the data.
      num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely
    Returns:
      Tuple of (features, labels) for next data batch
    """
    
    # Convert pandas data into a dict of np arrays.
    features = {key:np.array(value) for key,value in dict(features).items()}
 
    # Construct a dataset, and configure batching/repeating
    ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit
    ds = ds.batch(batch_size).repeat(num_epochs)
    
    # Shuffle the data, if specified
    if shuffle:
      ds = ds.shuffle(buffer_size=10000)
    
    # Return the next batch of data
    features, labels = ds.make_one_shot_iterator().get_next()
    return features, labels


def train_model(learning_rate, steps, batch_size, input_feature):
  """Trains a linear regression model.
  
  Args:
    learning_rate: A `float`, the learning rate.
    steps: A non-zero `int`, the total number of training steps. A training step
      consists of a forward and backward pass using a single batch.
    batch_size: A non-zero `int`, the batch size.
    input_feature: A `string` specifying a column from `california_housing_dataframe`
      to use as input feature.
      
  Returns:
    A Pandas `DataFrame` containing targets and the corresponding predictions done
    after training the model.
  """
  
  periods = 10
  steps_per_period = steps / periods

  my_feature = input_feature
  my_feature_data = california_housing_dataframe[[my_feature]].astype('float32')
  my_label = "median_house_value"
  targets = california_housing_dataframe[my_label].astype('float32')

  # Create input functions
  training_input_fn = lambda: my_input_fn(my_feature_data, targets, batch_size=batch_size)
  predict_training_input_fn = lambda: my_input_fn(my_feature_data, targets, num_epochs=1, shuffle=False)
  
  # Create feature columns
  feature_columns = [tf.feature_column.numeric_column(my_feature)]
    
  # Create a linear regressor object.
  my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
  my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)
  linear_regressor = tf.estimator.LinearRegressor(
      feature_columns=feature_columns,
      optimizer=my_optimizer
  )

  # Set up to plot the state of our model's line each period.
  plt.figure(figsize=(15, 6))
  plt.subplot(1, 2, 1)
  plt.title("Learned Line by Period")
  plt.ylabel(my_label)
  plt.xlabel(my_feature)
  sample = california_housing_dataframe.sample(n=300)
  plt.scatter(sample[my_feature], sample[my_label])
  colors = [cm.coolwarm(x) for x in np.linspace(-1, 1, periods)]

  # Train the model, but do so inside a loop so that we can periodically assess
  # loss metrics.
  print "Training model..."
  print "RMSE (on training data):"
  root_mean_squared_errors = []
  for period in range (0, periods):
    # Train the model, starting from the prior state.
    linear_regressor.train(
        input_fn=training_input_fn,
        steps=steps_per_period,
    )
    # Take a break and compute predictions.
    predictions = linear_regressor.predict(input_fn=predict_training_input_fn)
    predictions = np.array([item['predictions'][0] for item in predictions])
    
    # Compute loss.
    root_mean_squared_error = math.sqrt(
      metrics.mean_squared_error(predictions, targets))
    # Occasionally print the current loss.
    print "  period %02d : %0.2f" % (period, root_mean_squared_error)
    # Add the loss metrics from this period to our list.
    root_mean_squared_errors.append(root_mean_squared_error)
    # Finally, track the weights and biases over time.
    # Apply some math to ensure that the data and line are plotted neatly.
    y_extents = np.array([0, sample[my_label].max()])
    
    weight = linear_regressor.get_variable_value('linear/linear_model/%s/weights' % input_feature)[0]
    bias = linear_regressor.get_variable_value('linear/linear_model/bias_weights')
    
    x_extents = (y_extents - bias) / weight
    x_extents = np.maximum(np.minimum(x_extents,
                                      sample[my_feature].max()),
                           sample[my_feature].min())
    y_extents = weight * x_extents + bias
    plt.plot(x_extents, y_extents, color=colors[period]) 
  print "Model training finished."

  # Output a graph of loss metrics over periods.
  plt.subplot(1, 2, 2)
  plt.ylabel('RMSE')
  plt.xlabel('Periods')
  plt.title("Root Mean Squared Error vs. Periods")
  plt.tight_layout()
  plt.plot(root_mean_squared_errors)

  # Create a table with calibration data.
  calibration_data = pd.DataFrame()
  calibration_data["predictions"] = pd.Series(predictions)
  calibration_data["targets"] = pd.Series(targets)
  display.display(calibration_data.describe())

  print "Final RMSE (on training data): %0.2f" % root_mean_squared_error
  
  return calibration_data

尝试合成特征

total_rooms  population 特征都会统计指定街区的相关总计数据。

但是,如果一个街区比另一个街区的人口更密集,会怎么样?我们可以创建一个合成特征(即 total_rooms  population 的比例)来探索街区人口密度与房屋价值中位数之间的关系。


california_housing_dataframe["rooms_per_person"] = (
    california_housing_dataframe["total_rooms"] / california_housing_dataframe["population"])

calibration_data = train_model(
    learning_rate=0.05,
    steps=500,
    batch_size=5,
    input_feature="rooms_per_person")

识别离群值

我们可以通过创建预测值与目标值的散点图来可视化模型效果。理想情况下,这些值将位于一条完全相关的对角线上。

猜你喜欢

转载自blog.csdn.net/qq_41196472/article/details/79872396