ConcurrentHashMap原理浅析

HashMap在高并发场景下存在的问题

具体信息可以查看下面这个帖子

https://blog.csdn.net/minkeyto/article/details/78667944

如果实在懒得看也没有关系,我们来简单回顾一下HashMap的结构:

简单来说,HashMap是一个Entry对象的数组。数组中的每一个Entry元素,又是一个链表的头节点。

Hashmap不是线程安全的。在高并发环境下做插入操作,有可能出现下面的环形链表:

Segment

在高并发的情况下,一般会使用currentHashMap,ConcurrentHashMap对比HashMap主要是增加了Segment的概念。

Segment是什么呢?Segment本身就相当于一个HashMap对象。

同HashMap一样,Segment包含一个HashEntry数组,数组中的每一个HashEntry既是一个键值对,也是一个链表的头节点。

单一的Segment结构如下:

像这样的Segment对象,在ConcurrentHashMap集合中有多少个呢?有2的N次方个,共同保存在一个名为segments的数组当中。

因此整个ConcurrentHashMap的结构如下:

可以说,ConcurrentHashMap是一个二级哈希表。在一个总的哈希表下面,有若干个子哈希表。

这样的二级结构,和数据库的水平拆分有些相似。

Case1:不同Segment的并发写入

不同Segment的写入是可以并发执行的。

Case2:同一Segment的一写一读

同一Segment的写和读是可以并发执行的。

Case3:同一Segment的并发写入

Segment的写入是需要上锁的,因此对同一Segment的并发写入会被阻塞。

由此可见,ConcurrentHashMap当中每个Segment各自持有一把锁。在保证线程安全的同时降低了锁的粒度,让并发操作效率更高。

Segment的锁


Segment继承了ReentrantLock,因此它实际上是一把锁。在进行put、remove、replace、clear等需要改动内部内容的操作时,都要进行加锁操作,其代码一般是这样的:

final V put(K key, int hash, V value, boolean onlyIfAbsent) {
    HashEntry<K,V> node = tryLock() ? null :
        scanAndLockForPut(key, hash, value);
    V oldValue;
    try {
//实际代码……
        }
    } finally {
        unlock();
    }
    return oldValue;
}

首先调用tryLock,如果加锁失败,则进入scanAndLockForPut(key, hash, value) 
该方法实际上是先自旋等待其他线程解锁,直至指定的次数MAX_SCAN_RETRIES 
若自旋过程中,其他线程释放了锁,导致本线程直接获得了锁,就避免了本线程进入等待锁的场景,提高了效率 
若自旋一定次数后,仍未获取锁,则调用lock方法进入等待锁的场景

采用这种自旋锁和独占锁结合的方法,在很多场景下能够提高Segment并发操作数据的效率。
 

定位Segment 


既然ConcurrentHashMap使用分段锁Segment来保护不同段的数据,那么在插入和获取元素时,必须先通过散列算法定位到Segment.可以看到ConcurrentHashMap会首先使用Wang/Jenkins hash的变种算法对元素的hashCode进行一次再散列.
       private static int hash(int h) {
            h += (h << 15) ^ 0xffffcd7d;
            h ^= (h >>> 10);
            h += (h << 3);
            h ^= (h >>> 6);
            h += (h << 2) + (h << 14);
            return h ^ (h >>> 16);
        }

进行再散列,是为了减少散列冲突,使元素能够均匀地分布在不同的Segment上,从而提高容器的存取效率. 
假如散列的质量差到极点,那么所有的元素都在一个Segment中,不仅存取元素缓慢,分段锁也会失去意义.

ConcurrentHashMap通过以下散列算法定位segment

final Segment<K,V> segmentFor(int hash) {
      return segments[(hash >>> segmentShift) & segmentMask];
}

默认情况下segmentShift为28,segmentMask为15,再散列后的数最大是32位二进制数据,向右无符号移动28位,即让高4位参与到散列运算中,(hash>>>segmentShift)&segmentMask的运算结果分别是4、15、7和8,可以看到散列值没有发生冲突.
 

读写

CurrentHashMap的大致读写过程如下:

Get方法:

1.为输入的Key做Hash运算,得到hash值。

2.通过hash值,定位到对应的Segment对象

3.再次通过hash值,定位到Segment当中数组的具体位置。

public V get(Object key) {
    Segment<K,V> s; 
    HashEntry<K,V>[] tab;
    int h = hash(key);
//找到segment的地址 long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
//取出segment,并找到其hashtable if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
        (tab = s.table) != null) {
//遍历此链表,直到找到对应的值 for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                 (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
             e != null; e = e.next) {
            K k;
            if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                return e.value;
        }
    }
    return null;
}

整个get方法不需要加锁,只需要计算两次hash值,然后遍历一个单向链表(此链表长度平均小于2),因此get性能很高。 
高效之处在于整个过程不需要加锁,除非读到的值是空才会加锁重读. 
HashTable容器的get方法是需要加锁的,那ConcurrentHashMap的get操作是如何做到不加锁的呢? 
原因是它的get方法将要使用的共享变量都定义成了volatile类型, 
如用于统计当前Segement大小的count字段和用于存储值的HashEntry的value.定义成volatile的变量,能够在线程之间保持可见性,能够被多线程同时读,并且保证不会读到过期的值,但是只能被单线程写(有一种情况可以被多线程写,就是写入的值不依赖于原值), 
在get操作里只需要读不需要写共享变量count和value,所以可以不用加锁. 
之所以不会读到过期的值,是因为根据Java内存模型的happen before原则,对volatile字段的写操作先于读操作,即使两个线程同时修改和获取 
volatile变量,get操作也能拿到最新的值, 
这是用volatile替换锁的经典应用场景.

transient volatile int count;
volatile V value;

在定位元素的代码里可以发现,定位HashEntry和定位Segment的散列算法虽然一样,都与数组的长度减去1再相“与”,但是相“与”的值不一样

定位Segment使用的是元素的hashcode再散列后得到的值的高位
定位HashEntry直接使用再散列后的值.
其目的是避免两次散列后的值一样,虽然元素在Segment里散列开了,但是却没有在HashEntry里散列开.

hash >>> segmentShift & segmentMask   // 定位Segment所使用的hash算法
int index = hash & (tab.length - 1);   // 定位HashEntry所使用的hash算法

Put方法:

1.为输入的Key做Hash运算,得到hash值。

2.通过hash值,定位到对应的Segment对象

3.获取可重入锁

4.再次通过hash值,定位到Segment当中数组的具体位置。

5.插入或覆盖HashEntry对象。

6.释放锁。

由于需要对共享变量进行写操作,所以为了线程安全,在操作共享变量时必须加锁. 
put方法首先定位到Segment,然后在Segment里进行插入操作. 
插入操作需要经历两个步骤

判断是否需要对Segment里的HashEntry数组进行扩容
定位添加元素的位置,然后将其放在HashEntry数组里

是否需要扩容 
在插入元素前会先判断Segment里的HashEntry数组是否超过容量(threshold),如果超过阈值,则对数组进行扩容. 
值得一提的是,Segment的扩容判断比HashMap更恰当,因为HashMap是在插入元素后判断元素是否已经到达容量的,如果到达了就进行扩容,但是很有可能扩容之后没有新元素插入,这时HashMap就进行了一次无效的扩容.
如何扩容 
在扩容的时候,首先会创建一个容量是原来两倍的数组,然后将原数组里的元素进行再散列后插入到新的数组里. 
为了高效,ConcurrentHashMap不会对整个容器进行扩容,而只对某个segment扩容.
put方法的第一步,计算segment数组的索引,并找到该segment,然后调用该segment的put方法。

public V put(K key, V value) {
    Segment<K,V> s;
    if (value == null)
        throw new NullPointerException();
    int hash = hash(key);
//计算segment数组的索引,并找到该segment int j = (hash >>> segmentShift) & segmentMask;
    if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
         (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
        s = ensureSegment(j);
//调用该segment的put方法 return s.put(key, hash, value, false);
}

put方法第二步,在Segment的put方法中进行操作。

final V put(K key, int hash, V value, boolean onlyIfAbsent) {
//调用tryLock()尝试加锁,若失败则调用scanAndLockForPut进行加锁,同时寻找key相应的节点node
    HashEntry<K,V> node = tryLock() ? null :
        scanAndLockForPut(key, hash, value);
//以下的代码都运行在加锁状态
    V oldValue;
    try {
        HashEntry<K,V>[] tab = table;
//计算hash表的索引值,并取出HashEntry int index = (tab.length - 1) & hash;
        HashEntry<K,V> first = entryAt(tab, index);
//遍历此链表 for (HashEntry<K,V> e = first;;) {
//如果链表不为空,在链表中寻找对应的node,找到后进行赋值,并退出循环 if (e != null) {
                K k;
                if ((k = e.key) == key ||
                    (e.hash == hash && key.equals(k))) {
                    oldValue = e.value;
                    if (!onlyIfAbsent) {
                        e.value = value;
                        ++modCount;
                    }
                    break;
                }
                e = e.next;
            }
//如果在链表中没有找到对应的node else {
//如果scanAndLockForPut方法中已经返回的对应的node,则将其插入first之前 if (node != null)
                    node.setNext(first);
                else //否则,new一个新的HashEntry
                    node = new HashEntry<K,V>(hash, key, value, first);
                int c = count + 1;
//测试是否需要自动扩容 if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                    rehash(node);
                else //设置node到Hash表的index索引处
                    setEntryAt(tab, index, node);
                ++modCount;
                count = c;
                oldValue = null;
                break;
            }
        }
    } finally {
        unlock();
    }
    return oldValue;
}
 

size 方法

要统计整个ConcurrentHashMap里元素的数量,就必须统计所有Segment里元素的数量后计总. 
Segment里的全局变量count是一个volatile,在并发场景下,是不是直接把所有Segment的count相加就可以得到整个ConcurrentHashMap大小了呢?不是的 
虽然相加时可以获取每个Segment的count的最新值,但是可能累加前使用的count发生了变化,那么统计结果就不准了. 
所以,最安全的做法是在统计size的时候把所有Segment的put、remove和clean方法全部锁住,但是这种做法显然非常低效.

因为在累加count操作过程中,之前累加过的count发生变化的几率非常小,所以 
ConcurrentHashMap的做法是先尝试2次通过不锁Segment的方式来统计各个Segment大小,如果统计的过程中,count发生了变化,则再采用加锁的方式来统计所有Segment的大小.

那么ConcurrentHashMap又是如何判断在统计的时候容器是否发生了变化呢? 
使用modCount变量,在put、remove和clean方法里操作元素前都会将变量modCount进行加1,那么在统计size前后比较modCount是否发生变化,从而得知容器的大小是否发生变化.

大体逻辑如下:

1.遍历所有的Segment。

2.把Segment的元素数量累加起来。

3.把Segment的修改次数累加起来。

4.判断所有Segment的总修改次数是否大于上一次的总修改次数。如果大于,说明统计过程中有修改,重新统计,尝试次数+1;如果不是。说明没有修改,统计结束。

5.如果尝试次数超过阈值,则对每一个Segment加锁,再重新统计(阈值默认为2)。

6.再次判断所有Segment的总修改次数是否大于上一次的总修改次数。由于已经加锁,次数一定和上次相等。

7.释放锁,统计结束。

为什么这样设计呢?这种思想和乐观锁悲观锁的思想如出一辙。

为了尽量不锁住所有Segment,首先乐观地假设Size过程中不会有修改。当尝试一定次数,才无奈转为悲观锁,锁住所有Segment保证强一致性。

猜你喜欢

转载自blog.csdn.net/u012133048/article/details/83144422