kafka技术增强

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/zuochang_liu/article/details/81697761

目录

 

1 kafka整体结构图

2 Consumer与topic关系

3 kafka消息的分发

4 Consumer的负载均衡

5 kafka文件存储机制

5.1 kafka文件存储基本结构

5.2 kafka Partition Segment

5.3 kafka查找message

5.3.1 查找segment file

5.3.2 通过segment file查找message

6 附加(broker存储消息)

6.1 消息存储方式

6.2 消息存储策略

6.3 kafka log的存储解析


1 kafka整体结构图

Kafka名词解释和工作方式

  • Producer :消息生产者,就是向kafka broker发消息的客户端。
  • Consumer :消息消费者,向kafka broker取消息的客户端
  • Topic :咋们可以理解为一个队列。
  • Consumer Group (CG):这是kafka用来实现一个topic消息的广播(发给所有的consumer)和单播(发给任意一个consumer)的手段。一个topic可以有多个CG。topic的消息会复制(不是真的复制,是概念上的)到所有的CG,但每个partion只会把消息发给该CG中的一个consumer。如果需要实现广播,只要每个consumer有一个独立的CG就可以了。要实现单播只要所有的consumer在同一个CG。用CG还可以将consumer进行自由的分组而不需要多次发送消息到不同的topic。
  • Broker :一台kafka服务器就是一个broker。一个集群由多个broker组成。一个broker可以容纳多个topic。
  • Partition:为了实现扩展性,一个非常大的topic可以分布到多个broker(即服务器)上,一个topic可以分为多个partition,每个partition是一个有序的队列。partition中的每条消息都会被分配一个有序的id(offset)。kafka只保证按一个partition中的顺序将消息发给consumer,不保证一个topic的整体(多个partition间)的顺序。
  • Offset:kafka的存储文件都是按照offset.kafka来命名,用offset做名字的好处是方便查找。例如你想找位于2049的位置,只要找到2048.kafka的文件即可。当然the first offset就是00000000000.kafka

2 Consumer与topic关系

本质上kafka只支持Topic;

  • 每个group中可以有多个consumer,每个consumer属于一个consumer group;

        通常情况下,一个group中会包含多个consumer,这样不仅可以提高topic中消息的并发消费能力,而且还能提高"故障容              错"性,如果group中的某个consumer失效那么其消费的partitions将会有其他consumer自动接管。

  • 对于Topic中的一条特定的消息,只会被订阅此Topic的每个group中的其中一个consumer消费,此消息不会发送给一个group的多个consumer;

        那么一个group中所有的consumer将会交错的消费整个Topic,每个group中consumer消息消费互相独立,我们可以认为一           个group是一个"订阅"者。

  • 在kafka中,一个partition中的消息只会被group中的一个consumer消费(同一时刻)

        一个Topic中的每个partions,只会被一个"订阅者"中的一个consumer消费,不过一个consumer可以同时消费多个partitions          中的消息。

  • kafka的设计原理决定,对于一个topic,同一个group中不能有多于partitions个数的consumer同时消费,否则将意味着某些consumer将无法得到消息。

       kafka只能保证一个partition中的消息被某个consumer消费时是顺序的;事实上,从Topic角度来说,当有多个partitions时,         消息仍不是全局有序的。

3 kafka消息的分发

Producer客户端负责消息的分发

  • kafka集群中的任何一个broker都可以向producer提供metadata信息,这些metadata中包含"集群中存活的servers列表"/"partitions leader列表"等信息;
  • 当producer获取到metadata信息之后, producer将会和Topic下所有partition leader保持socket连接;
  • 消息由producer直接通过socket发送到broker,中间不会经过任何"路由层",事实上,消息被路由到哪个partition上由producer客户端决定;比如可以采用"random""key-hash""轮询"等,如果一个topic中有多个partitions,那么在producer端实现"消息均衡分发"是必要的。
  • 在producer端的配置文件中,开发者可以指定partition路由的方式。

 

Producer消息发送的应答机制

设置发送数据是否需要服务端的反馈,有三个值0,1,-1

0: producer不会等待broker发送ack

1: 当leader接收到消息之后发送ack

-1: 当所有的follower都同步消息成功后发送ack

request.required.acks=0

4 Consumer的负载均衡

当一个group中,有consumer加入或者离开时,会触发partitions均衡.均衡的最终目的,是提升topic的并发消费能力,步骤如下:

  1. 假如topic1,具有如下partitions: P0,P1,P2,P3
  2. 加入group中,有如下consumer: C1,C2
  3. 首先根据partition索引号对partitions排序: P0,P1,P2,P3
  4. 根据consumer.id排序: C0,C1
  5. 计算倍数: M = [P0,P1,P2,P3].size / [C0,C1].size,本例值M=2(向上取整)
  6. 然后依次分配partitions: C0 = [P0,P1],C1=[P2,P3],即Ci = [P(i * M),P((i + 1) * M -1)]

5 kafka文件存储机制

5.1 kafka文件存储基本结构

1.在Kafka文件存储中,同一个topic下有多个不同partition,每个partition为一个目录,partiton命名规则为topic名称+有序序号,第一个partiton序号从0开始,序号最大值为partitions数量减1。

2.每个partion(目录)相当于一个巨型文件被平均分配到多个大小相等segment(段)数据文件中。但每个段segment file消息数量不一定相等,这种特性方便old segment file快速被删除。默认保留7天的数据。

3.每个partiton只需要支持顺序读写就行了,segment文件生命周期由服务端配置参数决定。(什么时候创建,什么时候删除)

数据有序的讨论?

一个partition的数据是否是有序的? 间隔性有序,不连续

针对一个topic里面的数据,只能做到partition内部有序,不能做到全局有序。

特别加入消费者的场景后,如何保证消费者消费的数据全局有序的?伪命题。

只有一种情况下才能保证全局有序?就是只有一个partition。

5.2 kafka Partition Segment

1.Segment file组成:由2大部分组成,分别为index file和data file,此2个文件一一对应,成对出现,后缀".index"和“.log”分别表示为segment索引文件、数据文件。

2.Segment文件命名规则:partion全局的第一个segment从0开始,后续每个segment文件名为上一个segment文件最后一条消息的offset值。数值最大为64位long大小,19位数字字符长度,没有数字用0填充。

3.索引文件存储大量元数据,数据文件存储大量消息,索引文件中元数据指向对应数据文件中message的物理偏移地址。

上述图中索引文件存储大量元数据,数据文件存储大量消息,索引文件中元数据指向对应数据文件中message的物理偏移地址。

其中以索引文件中元数据3,497为例,依次在数据文件中表示第3个message(在全局partiton表示第368772个message)、以及该消息的物理偏移地址为497。

segment data file由许多message组成, qq物理结构如下

关键字

解释说明

8 byte offset

在parition(分区)内的每条消息都有一个有序的id号,这个id号被称为偏移(offset),它可以唯一确定每条消息在parition(分区)内的位置。即offset表示partiion的第多少message

4 byte message size

message大小

4 byte CRC32

用crc32校验message

1 byte “magic"

表示本次发布Kafka服务程序协议版本号

1 byte “attributes"

表示为独立版本、或标识压缩类型、或编码类型。

4 byte key length

表示key的长度,当key为-1时,K byte key字段不填

K byte key

可选

value bytes payload

表示实际消息数据。


 

5.3 kafka查找message

读取offset=368776的message,需要通过下面2个步骤查找。

5.3.1 查找segment file

00000000000000000000.index表示最开始的文件,起始偏移量(offset)为0

00000000000000368769.index的消息量起始偏移量为368770 = 368769 + 1

00000000000000737337.index的起始偏移量为737338=737337 + 1

其他后续文件依次类推。

以起始偏移量命名并排序这些文件,只要根据offset **二分查找**文件列表,就可以快速定位到具体文件。当offset=368776时定位到00000000000000368769.index和对应log文件。

5.3.2 通过segment file查找message

当offset=368776时,依次定位到00000000000000368769.index的元数据物理位置和00000000000000368769.log的物理偏移地址

然后再通过00000000000000368769.log顺序查找直到offset=368776为止。

 

6 附加(broker存储消息)

6.1 消息存储方式

物理上把 topic 分成一个或多个 partition(对应 server.properties 中的 num.partitions=3 配置),每个 partition 物理上对应一个文件夹(该文件夹存储该 partition 的所有消息和索引文件),如下:

6.2 消息存储策略

无论消息是否被消费,kafka 都会保留所有消息。有两种策略可以删除旧数据:

log.retention.hours=168 #基于时间

log.retention.bytes=1073741824 #基于大小

6.3 kafka log的存储解析

Partition中的每条Message由offset来表示它在这个partition中的偏移量,这个offset不是该Message在partition数据文件中的实际存储位置,而是逻辑上一个值,它唯一确定了partition中的一条Message。因此,可以认为offset是partition中Message的id。partition中的每条Message包含了以下三个属性:

  • offset
  • MessageSize
  • data

其中offset为long型,MessageSize为int32,表示data有多大,data为message的具体内容。

 

我们来思考一下,如果一个partition只有一个数据文件会怎么样?

  1. 新数据是添加在文件末尾,不论文件数据文件有多大,这个操作永远都是高效的。
  2. 查找某个offset的Message是顺序查找的。因此,如果数据文件很大的话,查找的效率就低。

 

那Kafka是如何解决查找效率的的问题呢?有两大法宝:1) 分段 2) 索引。

  • 数据文件的分段

Kafka解决查询效率的手段之一是将数据文件分段,比如有100条Message,它们的offset是从0到99。假设将数据文件分成5段,第一段为0-19,第二段为20-39,以此类推,每段放在一个单独的数据文件里面,数据文件以该段中最小的offset命名。这样在查找指定offset的Message的时候,用二分查找就可以定位到该Message在哪个段中。

  • 为数据文件建索引

数据文件分段使得可以在一个较小的数据文件中查找对应offset的Message了,但是这依然需要顺序扫描才能找到对应offset的Message。为了进一步提高查找的效率,Kafka为每个分段后的数据文件建立了索引文件,文件名与数据文件的名字是一样的,只是文件扩展名为.index。

索引文件中包含若干个索引条目,每个条目表示数据文件中一条Message的索引。索引包含两个部分,分别为相对offset和position。

  • 相对offset:因为数据文件分段以后,每个数据文件的起始offset不为0,相对offset表示这条Message相对于其所属数据文件中最小的offset的大小。举例,分段后的一个数据文件的offset是从20开始,那么offset为25的Message在index文件中的相对offset就是25-20 = 5。存储相对offset可以减小索引文件占用的空间。
  • position,表示该条Message在数据文件中的绝对位置。只要打开文件并移动文件指针到这个position就可以读取对应的Message了。

index文件中并没有为数据文件中的每条Message建立索引,而是采用了稀疏存储的方式,每隔一定字节的数据建立一条索引。这样避免了索引文件占用过多的空间,从而可以将索引文件保留在内存中。但缺点是没有建立索引的Message也不能一次定位到其在数据文件的位置,从而需要做一次顺序扫描,但是这次顺序扫描的范围就很小了。

我们以几张图来总结一下Message是如何在Kafka中存储的,以及如何查找指定offset的Message的。

Message是按照topic来组织,每个topic可以分成多个的partition,比如:有5个partition的名为为page_visits的topic的目录结构为:

 

partition是分段的,每个段叫Segment,包括了一个数据文件和一个索引文件,下图是某个partition目录下的文件:

可以看到,这个partition有4个Segment。

 

图示Kafka是如何查找Message的。

比如:要查找绝对offset为7的Message:

首先是用二分查找确定它是在哪个LogSegment中,自然是在第一个Segment中。

打开这个Segment的index文件,也是用二分查找找到offset小于或者等于指定offset的索引条目中最大的那个offset。自然offset为6的那个索引是我们要找的,通过索引文件我们知道offset为6的Message在数据文件中的位置为9807。

打开数据文件,从位置为9807的那个地方开始顺序扫描直到找到offset为7的那条Message。

这套机制是建立在offset是有序的。索引文件被映射到内存中,所以查找的速度还是很快的。

一句话,Kafka的Message存储采用了分区(partition),分段(LogSegment)和稀疏索引这几个手段来达到了高效性。

猜你喜欢

转载自blog.csdn.net/zuochang_liu/article/details/81697761
今日推荐