Dropout(随机失活)正则化

一 .概述

1.定义

Dropout说的简单一点就是:我们在前向传播的时候,让某个神经元的激活值以一定的概率p停止工作,这样可以使模型泛化性更强,因为它不会太依赖某些局部的特征 

97e37bf0d2893f890561cda932ba8c42.png

假设你在训练上图这样的神经网络,它存在过拟合,这就是dropout所要处理的,我们复制这个神经网络,dropout会遍历网络的每一层,并设置消除神经网络中节点的概率。假设网络中的每一层,每个节点都以抛硬币的方式设置概率,每个节点得以保留和消除的概率都是0.5,设置完节点概率,我们会消除一些节点,然后删除掉从该节点进出的连线,最后得到一个节点更少,规模更小的网络,然后用backprop方法进行训练。

e45f9a948989b365650ddf16f62b097e.png

 9fa7196adeeaf88eb386fda2e9fa9909.png

这是网络节点精简后的一个样本,对于其它样本,我们照旧以抛硬币的方式设置概率,保留一类节点集合,删除其它类型的节点集合。对于每个训练样本,我们都将采用一个精简后神经网络来训练它,这种方法似乎有点怪,单纯遍历节点,编码也是随机的,可它真的有效。不过可想而知,我们针对每个训练样本训练规模极小的网络,最后你可能会认识到为什么要正则化网络,因为我们在训练极小的网络。 

2.实现

Dropout的实现方法-inverted dropout(反向随机失活)

用一个三层l=3网络来举例说明:

首先要定义向量d,d3表示一个三层的dropout向量

#d3是一个bool型数组,但在其后的multiply运算中Python会把true和false转化为0和1
d3 = np.random.rand(a3.shape[0],a3.shape[1])<keep-prob

然后看它是否小于某数,我们称之为keep-probkeep-prob是一个具体数字,上个示例中它是0.5,而本例中它是0.8,它表示保留某个隐藏单元的概率,此处keep-prob等于0.8,它意味着消除任意一个隐藏单元的概率是0.2,它的作用就是生成随机矩阵,如果对a3进行因子分解,效果也是一样的。d3是一个矩阵,每个样本和每个隐藏单元,其中d3中的对应值为1的概率都是0.8,对应为0的概率是0.2,随机数字小于0.8。它等于1的概率是0.8,等于0的概率是0.2。 

接下来要做的就是从第三层中获取激活函数,这里我们叫它a3,a3含有要计算的激活函数,a3等于上面的a3乘以d3,

a3 =np.multiply(a3,d3)

这里是元素相乘,也可写为a3*=d3,它的作用就是让d3中所有等于0的元素(输出),而各个元素等于0的概率只有20%,乘法运算最终把d3中相应元素输出,即让d3中0元素与a0中相对元素归零。

a3/=keep-prob

反向随机失活(inverted dropout)方法通过除以keep-prob,确保a3的期望值不变

3.测试阶段

在测试阶段,我们并未使用dropout,自然也就不用抛硬币来决定失活概率,以及要消除哪些隐藏单元了,因为在测试阶段进行预测时,我们不期望输出结果是随机的,如果测试阶段应用dropout函数,预测会受到干扰。理论上,你只需要多次运行预测处理过程,每一次,不同的隐藏单元会被随机归零,预测处理遍历它们,但计算效率低,得出的结果也几乎相同,与这个不同程序产生的结果极为相似。Inverted dropout函数在除以keep-prob时可以记住上一步的操作,目的是确保即使在测试阶段不执行dropout来调整数值范围,激活函数的预期结果也不会发生变化,所以没必要在测试阶段额外添加尺度参数,这与训练阶段不同。

二.理解

Dropout可以随机删除网络中的神经单元,他为什么可以通过正则化发挥如此大的作用呢?
直观上理解:不要依赖于任何一个特征,因为该单元的输入可能随时被清除,因此该单元通过这种方式传播下去,并为单元的四个输入增加一点权重,通过传播所有权重,dropout将产生收缩权重的平方范数的效果,和之前讲的L2正则化类似;实施dropout的结果实它会压缩权重,并完成一些预防过拟合的外层正则化;L2对不同权重的衰减是不同的,它取决于激活函数倍增的大小。

L2_week1_16.png

第二个直观认识是,我们从单个神经元入手,如图,这个单元的工作就是输入并生成一些有意义的输出。通过dropout,该单元的输入几乎被消除,有时这两个单元会被删除,有时会删除其它单元,就是说,我用紫色圈起来的这个单元,它不能依靠任何特征,因为特征都有可能被随机清除,或者说该单元的输入也都可能被随机清除。我不愿意把所有赌注都放在一个节点上,不愿意给任何一个输入加上太多权重,因为它可能会被删除,因此该单元将通过这种方式积极地传播开,并为单元的四个输入增加一点权重,通过传播所有权重,dropout将产生收缩权重的平方范数的效果,和我们之前讲过的L2正则化类似,实施dropout的结果是它会压缩权重,并完成一些预防过拟合的外层正则化。

事实证明,dropout被正式地作为一种正则化的替代形式,L2对不同权重的衰减是不同的,它取决于倍增的激活函数的大小。

总结一下,dropout的功能类似于L2正则化,与L2正则化不同的是,被应用的方式不同,dropout也会有所不同,甚至更适用于不同的输入范围。

 9b9f963a73e3ef9fcac008b179b6cf74.png

实施dropout的另一个细节是,这是一个拥有三个输入特征的网络,其中一个要选择的参数是keep-prob,它代表每一层上保留单元的概率。所以不同层的keep-prob也可以变化。第一层,矩阵W1是7×3,第二个权重矩阵W2是7×7,第三个权重矩阵W3是3×7,以此类推,W2是最大的权重矩阵,因为W2拥有最大参数集,即7×7,为了预防矩阵的过拟合,对于这一层,我认为这是第二层,它的keep-prob值应该相对较低,假设是0.5。对于其它层,过拟合的程度可能没那么严重,它们的keep-prob值可能高一些,可能是0.7,这里是0.7。如果在某一层,我们不必担心其过拟合的问题,那么keep-prob可以为1,为了表达清清除,我用紫色线笔把它们圈出来,每层keep-prob的值可能不同。

注意keep-prob的值是1,意味着保留所有单元,并且不在这一层使用dropout,对于有可能出现过拟合,且含有诸多参数的层,我们可以把keep-prob设置成比较小的值,以便应用更强大的dropout,有点像在处理L2正则化的正则化参数\lambda,我们尝试对某些层施行更多正则化,从技术上讲,我们也可以对输入层应用dropout,我们有机会删除一个或多个输入特征,虽然现实中我们通常不这么做,keep-prob的值为1,是非常常用的输入值,也可以用更大的值,或许是0.9。但是消除一半的输入特征是不太可能的,如果我们遵守这个准则,keep-prob会接近于1,即使你对输入层应用dropout

总结一下,如果你担心某些层比其它层更容易发生过拟合,可以把某些层的keep-prob值设置得比其它层更低,缺点是为了使用交叉验证,你要搜索更多的超级参数,另一种方案是在一些层上应用dropout,而有些层不用dropout,应用dropout的层只含有一个超级参数,就是keep-prob

dropout一大缺点就是代价函数$J$不再被明确定义,每次迭代,都会随机移除一些节点,如果再三检查梯度下降的性能,实际上是很难进行复查的。定义明确的代价函数J每次迭代后都会下降,因为我们所优化的代价函数J实际上并没有明确定义,或者说在某种程度上很难计算,所以我们失去了调试工具来绘制这样的图片。我通常会关闭dropout函数,将keep-prob的值设为1,运行代码,确保J函数单调递减。然后打开dropout函数,希望在dropout过程中,代码并未引入bug。我觉得你也可以尝试其它方法,虽然我们并没有关于这些方法性能的数据统计,但你可以把它们与dropout方法一起使用。

猜你喜欢

转载自blog.csdn.net/bestrivern/article/details/85273238
今日推荐