#莫比乌斯反演,整除分块,线性筛#bzoj 3994 洛谷 3327 [SDOI2015]约数个数和

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sugar_free_mint/article/details/84589864

题目

d ( x ) d(x) x x 的约数个数,给定 n , m n,m ,求 i = 1 n j = 1 m d ( i j ) \sum^n_{i=1}\sum^m_{j=1}d(ij)


分析

又到了推式子的过程了
a n s = i = 1 n j = 1 m x i y j [ g c d ( x , y ) = 1 ] ans=\sum^n_{i=1}\sum^m_{j=1}\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]
根据莫比乌斯反演,得到
a n s = i = 1 n j = 1 m x i y j d g c d ( x , y ) μ ( d ) ans=\sum^n_{i=1}\sum^m_{j=1}\sum_{x|i}\sum_{y|j}\sum_{d|gcd(x,y)}\mu(d)
直接枚举 d d ,得到
a n s = i = 1 n j = 1 m x i y j d = 1 m i n ( n , m ) μ ( d ) [ d g c d ( x , y ) ] ans=\sum^n_{i=1}\sum^m_{j=1}\sum_{x|i}\sum_{y|j}\sum_{d=1}^{min(n,m)}\mu(d)*[d|gcd(x,y)]
把只有关 d d 的项移出,得到
a n s = d = 1 m i n ( n , m ) μ ( d ) i = 1 n j = 1 m x i y j [ d g c d ( x , y ) ] ans=\sum_{d=1}^{min(n,m)}\mu(d)\sum^n_{i=1}\sum^m_{j=1}\sum_{x|i}\sum_{y|j}[d|gcd(x,y)]
换一种方式,得到
a n s = d = 1 m i n ( n , m ) μ ( d ) x = 1 n y = 1 m [ d g c d ( x , y ) ] n x m y ans=\sum_{d=1}^{min(n,m)}\mu(d)\sum_{x=1}^n\sum_{y=1}^m[d|gcd(x,y)]\lfloor\frac{n}{x}\rfloor\lfloor\frac{m}{y}\rfloor
枚举 d x , d y dx,dy ,得到
a n s = d = 1 m i n ( n , m ) μ ( d ) x = 1 n d y = 1 m d n d x m d y ans=\sum_{d=1}^{min(n,m)}\mu(d)\sum_{x=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{y=1}^{\lfloor\frac{m}{d}\rfloor}\lfloor\frac{n}{dx}\rfloor\lfloor\frac{m}{dy}\rfloor
再移项,得到
a n s = d = 1 m i n ( n , m ) μ ( d ) ( x = 1 n d n d x ) ( y = 1 m d m d y ) ans=\sum_{d=1}^{min(n,m)}\mu(d)(\sum_{x=1}^{\lfloor\frac{n}{d}\rfloor}\lfloor\frac{n}{dx}\rfloor)(\sum_{y=1}^{\lfloor\frac{m}{d}\rfloor}\lfloor\frac{m}{dy}\rfloor)
发现可以用整除分块和线性筛完成,于是


代码

#include <cstdio>
#include <cctype>
#define rr register
using namespace std;
const int N=50000;
int mu[N+1],v[N+1],prime[N+1],cnt,sum[N+1];
inline signed iut(){
    rr int ans=0; rr char c=getchar();
    while (!isdigit(c)) c=getchar();
    while (isdigit(c)) ans=(ans<<3)+(ans<<1)+c-48,c=getchar();
    return ans;
}
inline void prepa(){
    mu[1]=sum[1]=1; 
    for (rr int i=2;i<=N;++i){//线性筛莫比乌斯函数
        if (!v[i]) mu[i]=-1,v[i]=prime[++cnt]=i;
        for (rr int j=1;j<=cnt&&prime[j]*i<=N;++j){
            v[i*prime[j]]=prime[j];
            if (i%prime[j]) mu[i*prime[j]]=-mu[i];
                else break;
        }
    }
    for (rr int i=2;i<=N;++i){
        mu[i]+=mu[i-1];
        for (rr int l=1,r;l<=i;l=r+1)//整除分块
            sum[i]+=((r=(i/(i/l)))-l+1)*(i/l);
    }
}
inline signed min(int a,int b){return (a<b)?a:b;}
signed main(){
    prepa();
    rr int t=iut();
    while (t--){
        rr int n=iut(),m=iut();
        rr int minx=min(n,m);
        rr long long ans=0;
        for (rr int l=1,r;l<=minx;l=r+1){
            r=min(n/(n/l),m/(m/l));
            ans+=(mu[r]-mu[l-1])*1ll*sum[n/l]*sum[m/l];//按照刚刚的式子求出答案
        }
        printf("%lld\n",ans);
    }
    return 0;
}

猜你喜欢

转载自blog.csdn.net/sugar_free_mint/article/details/84589864