(转)XGBoost参数调优完全指南

原文(英文)地址:https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/
原文(翻译)地址:https://www.2cto.com/kf/201607/528771.html

简介
如果你的预测模型表现得有些不尽如人意,那就用XGBoost吧。XGBoost算法现在已经成为很多数据工程师的重要武器。它是一种十分精致的算法,可以处理各种不规则的数据。
构造一个使用XGBoost的模型十分简单。但是,提高这个模型的表现就有些困难(至少我觉得十分纠结)。这个算法使用了好几个参数。所以为了提高模型的表现,参数的调整十分必要。在解决实际问题的时候,有些问题是很难回答的——你需要调整哪些参数?这些参数要调到什么值,才能达到理想的输出?
这篇文章最适合刚刚接触XGBoost的人阅读。在这篇文章中,我们会学到参数调优的技巧,以及XGboost相关的一些有用的知识。以及,我们会用Python在一个数据集上实践一下这个算法。

内容列表
1、XGBoost的优势
2、理解XGBoost的参数

1、XGBoost的优势
XGBoost算法可以给预测模型带来能力的提升。当我对它的表现有更多了解的时候,当我对它的高准确率背后的原理有更多了解的时候,我发现它具有很多优势:

1、正则化
标准GBM的实现没有像XGBoost这样的正则化步骤。正则化对减少过拟合也是有帮助的。 实际上,XGBoost以“正则化提升(regularized boosting)”技术而闻名。
2、并行处理
XGBoost可以实现并行处理,相比GBM有了速度的飞跃。 不过,众所周知,Boosting算法是顺序处理的,它怎么可能并行呢?每一课树的构造都依赖于前一棵树,那具体是什么让我们能用多核处理器去构造一个树呢?我希望你理解了这句话的意思。 XGBoost 也支持Hadoop实现。
3、高度的灵活性
XGBoost 允许用户定义自定义优化目标和评价标准 它对模型增加了一个全新的维度,所以我们的处理不会受到任何限制。
4、缺失值处理
XGBoost内置处理缺失值的规则。 用户需要提供一个和其它样本不同的值,然后把它作为一个参数传进去,以此来作为缺失值的取值。XGBoost在不同节点遇到缺失值时采用不同的处理方法,并且会学习未来遇到缺失值时的处理方法。
5、剪枝
当分裂时遇到一个负损失时,GBM会停止分裂。因此GBM实际上是一个贪心算法。 XGBoost会一直分裂到指定的最大深度(max_depth),然后回过头来剪枝。如果某个节点之后不再有正值,它会去除这个分裂。 这种做法的优点,当一个负损失(如-2)后面有个正损失(如+10)的时候,就显现出来了。GBM会在-2处停下来,因为它遇到了一个负值。但是XGBoost会继续分裂,然后发现这两个分裂综合起来会得到+8,因此会保留这两个分裂。
6、内置交叉验证
XGBoost允许在每一轮boosting迭代中使用交叉验证。因此,可以方便地获得最优boosting迭代次数。 而GBM使用网格搜索,只能检测有限个值。
7、在已有的模型基础上继续
XGBoost可以在上一轮的结果上继续训练。这个特性在某些特定的应用上是一个巨大的优势。 sklearn中的GBM的实现也有这个功能,两种算法在这一点上是一致的。
相信你已经对XGBoost强大的功能有了点概念。注意这是我自己总结出来的几点,你如果有更多的想法,尽管在下面评论指出,我会更新这个列表的!

2、XGBoost的参数
XGBoost的作者把所有的参数分成了三类:
1、通用参数:宏观函数控制。
2、Booster参数:控制每一步的booster(tree/regression)。
3、学习目标参数:控制训练目标的表现。
在这里我会类比GBM来讲解,所以作为一种基础知识。

通用参数
这些参数用来控制XGBoost的宏观功能。

1、booster[默认gbtree]
选择每次迭代的模型,有两种选择:
gbtree:基于树的模型
gbliner:线性模型
2、silent[默认0]
当这个参数值为1时,静默模式开启,不会输出任何信息。 一般这个参数就保持默认的0,因为这样能帮我们更好地理解模型。
3、nthread[默认值为最大可能的线程数]
这个参数用来进行多线程控制,应当输入系统的核数。 如果你希望使用CPU全部的核,那就不要输入这个参数,算法会自动检测它。
还有两个参数,XGBoost会自动设置,目前你不用管它。接下来咱们一起看booster参数。

booster参数
尽管有两种booster可供选择,我这里只介绍tree booster,因为它的表现远远胜过linear booster,所以linear booster很少用到。

1、eta[默认0.3]
和GBM中的 learning rate 参数类似。 通过减少每一步的权重,可以提高模型的鲁棒性。 典型值为0.01-0.2。
2、min_child_weight[默认1]
决定最小叶子节点样本权重和。 和GBM的 min_child_leaf 参数类似,但不完全一样。XGBoost的这个参数是最小样本权重的和,而GBM参数是最小样本总数。 这个参数用于避免过拟合。当它的值较大时,可以避免模型学习到局部的特殊样本。 但是如果这个值过高,会导致欠拟合。这个参数需要使用CV来调整。
3、max_depth[默认6]
和GBM中的参数相同,这个值为树的最大深度。 这个值也是用来避免过拟合的。max_depth越大,模型会学到更具体更局部的样本。 需要使用CV函数来进行调优。 典型值:3-10
4、max_leaf_nodes
树上最大的节点或叶子的数量。 可以替代max_depth的作用。因为如果生成的是二叉树,一个深度为n的树最多生成n2个叶子。 如果定义了这个参数,GBM会忽略max_depth参数。
5、gamma[默认0]
在节点分裂时,只有分裂后损失函数的值下降了,才会分裂这个节点。Gamma指定了节点分裂所需的最小损失函数下降值。 这个参数的值越大,算法越保守。这个参数的值和损失函数息息相关,所以是需要调整的。
6、max_delta_step[默认0]
这参数限制每棵树权重改变的最大步长。如果这个参数的值为0,那就意味着没有约束。如果它被赋予了某个正值,那么它会让这个算法更加保守。 通常,这个参数不需要设置。但是当各类别的样本十分不平衡时,它对逻辑回归是很有帮助的。 这个参数一般用不到,但是你可以挖掘出来它更多的用处。
7、subsample[默认1]
和GBM中的subsample参数一模一样。这个参数控制对于每棵树,随机采样的比例。 减小这个参数的值,算法会更加保守,避免过拟合。但是,如果这个值设置得过小,它可能会导致欠拟合。 典型值:0.5-1
8、colsample_bytree[默认1]
和GBM里面的max_features参数类似。用来控制每棵随机采样的列数的占比(每一列是一个特征)。 典型值:0.5-1
9、colsample_bylevel[默认1]
用来控制树的每一级的每一次分裂,对列数的采样的占比。 我个人一般不太用这个参数,因为subsample参数和colsample_bytree参数可以起到相同的作用。但是如果感兴趣,可以挖掘这个参数更多的用处。
10、lambda[默认1]
权重的L2正则化项。(和Ridge regression类似)。 这个参数是用来控制XGBoost的正则化部分的。虽然大部分数据科学家很少用到这个参数,但是这个参数在减少过拟合上还是可以挖掘出更多用处的。
11、alpha[默认1]
权重的L1正则化项。(和Lasso regression类似)。 可以应用在很高维度的情况下,使得算法的速度更快。
12、scale_pos_weight[默认1]
在各类别样本十分不平衡时,把这个参数设定为一个正值,可以使算法更快收敛。

学习目标参数
这个参数用来控制理想的优化目标和每一步结果的度量方法。

1、objective[默认reg:linear]
这个参数定义需要被最小化的损失函数。最常用的值有:
binary:logistic 二分类的逻辑回归,返回预测的概率(不是类别)。 multi:softmax 使用softmax的多分类器,返回预测的类别(不是概率)。
在这种情况下,你还需要多设一个参数:num_class(类别数目)。 multi:softprob 和multi:softmax参数一样,但是返回的是每个数据属于各个类别的概率。
2、eval_metric[默认值取决于objective参数的取值]
对于有效数据的度量方法。 对于回归问题,默认值是rmse,对于分类问题,默认值是error。 典型值有:
rmse 均方根误差(∑Ni=1?2N???√) mae 平均绝对误差(∑Ni=1|?|N) logloss 负对数似然函数值 error 二分类错误率(阈值为0.5) merror 多分类错误率 mlogloss 多分类logloss损失函数 auc 曲线下面积
3、seed(默认0)
随机数的种子 设置它可以复现随机数据的结果,也可以用于调整参数
如果你之前用的是Scikit-learn,你可能不太熟悉这些参数。但是有个好消息,python的XGBoost模块有一个sklearn包,XGBClassifier。这个包中的参数是按sklearn风格命名的。会改变的函数名是:
1、eta ->learning_rate
2、lambda->reg_lambda
3、alpha->reg_alpha
你肯定在疑惑为啥咱们没有介绍和GBM中的’n_estimators’类似的参数。XGBClassifier中确实有一个类似的参数,但是,是在标准XGBoost实现中调用拟合函数时,把它作为’num_boosting_rounds’参数传入。

参数调优的一般方法。
我们会使用和GBM中相似的方法。需要进行如下步骤:

  1. 选择较高的学习速率(learning rate)。一般情况下,学习速率的值为0.1。但是,对于不同的问题,理想的学习速率有时候会在0.05到0.3之间波动。选择对应于此学习速率的理想决策树数量。XGBoost有一个很有用的函数“cv”,这个函数可以在每一次迭代中使用交叉验证,并返回理想的决策树数量。
  2. 对于给定的学习速率和决策树数量,进行决策树特定参数调优(max_depth, min_child_weight, gamma, subsample, colsample_bytree)。在确定一棵树的过程中,我们可以选择不同的参数,待会儿我会举例说明。
  3. xgboost的正则化参数的调优。(lambda, alpha)。这些参数可以降低模型的复杂度,从而提高模型的表现。
  4. 降低学习速率,确定理想参数。

猜你喜欢

转载自blog.csdn.net/weixin_43222937/article/details/84829205