java集合之----HashMap源码分析(基于JDK1.7与1.8)

一、什么是HashMap

百度百科这样解释:
在这里插入图片描述
简而言之,HashMap存储的是键值对(key和value),通过key映射到value,具有很快的访问速度。HashMap是非线程安全的,也就是说在多线程并发环境下会出现问题(死循环)

二、内部实现

(1)结构

HashMap是由数组+链表实现的(jdk1.7),如下图:
在这里插入图片描述
jdk1.8之后HashMap是由数组+链表+红黑树实现,JDK1.8之后在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。如下图:
在这里插入图片描述

  • 前面说到,HashMap通过key映射到value,其实就是通过key的hashcode经过哈希函数得到一个hash值从而得到当前元素存放的位置,如果当前位置存在元素的话,就判断该元素与要存入的元素的 hash 值以及 key 是否相同,如果相同的话,直接覆盖,不相同就通过拉链法解决冲突。(拉链法,也叫链地址法,简单来说,就是数组加链表的结合。在每个数组元素上都一个链表结构,当数据被Hash后,得到数组下标,把数据放在对应下标元素的链表上。)
  • 当我们put一个键值对进HashMap时,通过Hash算法来定位该键值对的存储位置,有时两个key会定位到相同的位置,这就是所谓的Hash碰撞(也称哈希冲突)。当然Hash算法计算结果越分散均匀、哈希数组越大,Hash碰撞的概率就越小,map的存取效率就会越高。
  • 如果哈希桶数组很大,即使较差的Hash算法也会比较分散,如果哈希桶数组数组很小,即使好的Hash算法也会出现较多碰撞,因此我们需要权衡空间与时间的成本,根据实际情况确定哈希桶数组的大小,并在此基础上设计好的hash算法减少Hash碰撞。那么通过什么方式来控制map使得Hash碰撞的概率又小,哈希桶数组(Node[] table)占用空间又少呢?答案就是好的Hash算法和扩容机制。

(2)重要字段

transient int size; //实际存储的key-value键值对的个数
int threshold;//阈值,最大能容纳kv对的数量
final float loadFactor;//负载因子,默认是0.75
transient int modCount;//内部结构发生变化的次数,用于快速失败,由于HashMap非线程安全,如果期间其他线程的参与导致HashMap的结构发生变化了,需要抛出异常ConcurrentModificationException

jdk1.7,HashMap有4个构造器,用户在创建时若没有传入initialCapacity 和loadFactor参数,则使用initialCapacity默认值16 和loadFactor默认值0.75,threshold=initialCapacity*loadFactor,也就是说当达到threshold,HashMap就需要扩容了(resize),因为这个时候hash冲突会越来越多,链表长度变长,效率降低。这里要注意,hash冲突不可避免,所以链表长度肯定会变长,因此在jdk1.8中,当链表长度达到规定阈值(默认是8)时,链表将转化为红黑树,以提高HashMap的性能。

(3)确定哈希桶数组索引位置

不管增加、删除、查找键值对,定位到哈希桶数组的位置都是很关键的第一步,这里的Hash算法本质上就是三步:取key的hashCode值、高位运算、取模运算。

static int hash(int h) {  //jdk1.7的hash方法
    h ^= (h >>> 20) ^ (h >>> 12);
    return h ^ (h >>> 7) ^ (h >>> 4);
}
static final int hash(Object key) {  //jdk1.8 的hash方法
     int h;
     // h = key.hashCode() 为第一步 取hashCode值
     // h ^ (h >>> 16)  为第二步 高位参与运算
     return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
 static int indexFor(int h, int length) {  //jdk1.7的源码,jdk1.8没有这个方法,但是实现原理一样的
     return h & (length-1);  //第三步 取模运算
}

对比1.7和1.8的hash算法,在JDK1.8的实现中,优化了高位运算的算法,通过hashCode()的高16位异或低16位实现的:(h = k.hashCode()) ^ (h >>> 16),主要是从速度、功效、质量来考虑的,这么做可以在数组table的length比较小的时候,也能保证考虑到高低位都参与到Hash的计算中,同时不会有太大的开销。
取模运算,通过h & (table.length -1)来得到该对象的保存位,而HashMap底层数组的长度总是2的n次方,这是HashMap在速度上的优化。当length总是2的n次方时,h& (length-1)运算等价于对length取模,也就是h%length,但是&比%具有更高的效率

(4)put方法

jdk1.7的源码

 public V put(K key, V value) {
        //如果table数组为空数组{},进行数组填充(为table分配实际内存空间),入参为threshold,此时threshold为initialCapacity 默认是1<<4(24=16)
        if (table == EMPTY_TABLE) {
            inflateTable(threshold);
        }
       //如果key为null,存储位置为table[0]或table[0]的冲突链上
        if (key == null)
            return putForNullKey(value);
        int hash = hash(key);//对key的hashcode进一步计算,确保散列均匀
        int i = indexFor(hash, table.length);//获取在table中的实际位置
        for (Entry<K,V> e = table[i]; e != null; e = e.next) {
        //如果该对应数据已存在,执行覆盖操作。用新value替换旧value,并返回旧value
            Object k;
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue;
            }
        }
        modCount++;//保证并发访问时,若HashMap内部结构发生变化,快速响应失败
        addEntry(hash, key, value, i);//新增一个entry
        return null;
    } 

jdk1.8的源码

public V put(K key, V value) {
      // 对key的hashCode()做hash
      return putVal(hash(key), key, value, false, true);
  }
  
  final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                 boolean evict) {
      Node<K,V>[] tab; Node<K,V> p; int n, i;
      // 步骤①:tab为空则创建
     if ((tab = table) == null || (n = tab.length) == 0)
         n = (tab = resize()).length;
     // 步骤②:计算index,并对null做处理 
     if ((p = tab[i = (n - 1) & hash]) == null) 
         tab[i] = newNode(hash, key, value, null);
     else {
         Node<K,V> e; K k;
         // 步骤③:节点key存在,直接覆盖value
         if (p.hash == hash &&
             ((k = p.key) == key || (key != null && key.equals(k))))
             e = p;
         // 步骤④:判断该链为红黑树
         else if (p instanceof TreeNode)
             e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
         // 步骤⑤:该链为链表
         else {
             for (int binCount = 0; ; ++binCount) {
                 if ((e = p.next) == null) {
                     p.next = newNode(hash, key,value,null);
                        //链表长度大于8转换为红黑树进行处理
                     if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st  
                         treeifyBin(tab, hash);
                     break;
                 }
                    // key已经存在直接覆盖value
                 if (e.hash == hash &&
                     ((k = e.key) == key || (key != null && key.equals(k))))                                          break;
                 p = e;
             }
         }
         
         if (e != null) { // existing mapping for key
             V oldValue = e.value;
             if (!onlyIfAbsent || oldValue == null)
                 e.value = value;
             afterNodeAccess(e);
             return oldValue;
         }
     }

     ++modCount;
     // 步骤⑥:超过最大容量 就扩容
     if (++size > threshold)
         resize();
     afterNodeInsertion(evict);
     return null;
 }

分析一下1.8的put方法:
①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容;
②.根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③;
③.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals;
④.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤;
⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;
⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。

(5)如何扩容

当HashMap的数组元素达到阈值时,为了保证性能,此时就需要扩容(resize),就是重新计算容量,以便能装入更多的元素。方法是使用一个新的数组代替已有的容量小的数组,(HashMap 默认的初始化大小为16。之后每次扩容,容量变为原来的2倍)
这里我们主要分析jdk1.7的源码,因为1.8引入了红黑树,理解起来比较麻烦

void resize(int newCapacity) {   //传入新的容量  
    Entry[] oldTable = table;    //引用扩容前的Entry数组  
    int oldCapacity = oldTable.length;  
    if (oldCapacity == MAXIMUM_CAPACITY) {  //扩容前的数组大小如果已经达到最大(2^30)了  
        threshold = Integer.MAX_VALUE; //修改阈值为int的最大值(2^31-1),这样以后就不会扩容了  
        return;  
    }  
  
    Entry[] newTable = new Entry[newCapacity];  //初始化一个新的Entry数组  
    transfer(newTable);                         //!!将数据转移到新的Entry数组里  
    table = newTable;                           //HashMap的table属性引用新的Entry数组  
    threshold = (int) (newCapacity * loadFactor);//修改阈值  
}  

transfer()方法将原有Entry数组的元素拷贝到新的Entry数组里。

void transfer(Entry[] newTable) {  
    Entry[] src = table;                   //src引用了旧的Entry数组  
    int newCapacity = newTable.length;  
    for (int j = 0; j < src.length; j++) { //遍历旧的Entry数组  
        Entry<K, V> e = src[j];             //取得旧Entry数组的每个元素  
        if (e != null) {  
            src[j] = null;//释放旧Entry数组的对象引用(for循环后,旧的Entry数组不再引用任何对象)  
            do {  
                Entry<K, V> next = e.next;  
                int i = indexFor(e.hash, newCapacity); //!!重新计算每个元素在数组中的位置  
                e.next = newTable[i]; //标记[1]  
                newTable[i] = e;      //将元素放在数组上  
                e = next;             //访问下一个Entry链上的元素  
            } while (e != null);  
        }  
    }  
}  
static int indexFor(int h, int length) {  
    return h & (length - 1);  
}  

(6)HashMap 的长度一定是2的幂次方

     /**
     * 这个方法保证了 HashMap 总是使用2的幂作为哈希表的大小。
     * Returns a power of two size for the given target capacity.
     */
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

HashMap 的长度为什么是2的幂次方?
如果数组进行扩容,数组长度发生变化,而存储位置 index = h&(length-1),index也可能会发生变化,需要重新计算index,看看上面(5)的transfer这个方法,这个方法将老数组中的数据逐个链表地遍历,扔到新的扩容后的数组中,我们的数组索引位置的计算是通过 对key值的hashcode进行hash扰乱运算后,再通过和 length-1进行位运算得到最终数组索引位置。
  hashMap的数组长度一定保持2的次幂,比如16的二进制表示为 10000,那么length-1就是15,二进制为01111,同理扩容后的数组长度为32,二进制表示为100000,length-1为31,二进制表示为011111。从下图可以我们也能看到这样会保证低位全为1,而扩容后只有一位差异,也就是多出了最左位的1,这样在通过 h&(length-1)的时候,只要h对应的最左边的那一个差异位为0,就能保证得到的新的数组索引和老数组索引一致
  在这里插入图片描述
  我们看到,上面的&运算,高位是不会对结果产生影响的(hash函数采用各种位运算可能也是为了使得低位更加散列),我们只关注低位bit,如果低位全部为1,那么对于h低位部分来说,任何一位的变化都会对结果产生影响,也就是说,要得到index=21这个存储位置,h的低位只有这一种组合。这也是数组长度设计为必须为2的次幂的原因。

(7)get方法

相比put方法,get方法的实现简单了很多,key的hashcode经过hash算法计算得到对应的索引位置,遍历该位置的链表,通过equal方法比对,若空则返回空,若比对成功则返回对应数值

三、总结

(1) 扩容是一个特别耗性能的操作,所以当程序员在使用HashMap的时候,估算map的大小,初始化的时候给一个大致的数值,避免map进行频繁的扩容。

(2) 负载因子是可以修改的,也可以大于1,但是建议不要轻易修改,除非情况非常特殊。

(3) HashMap是线程不安全的,不要在并发的环境中同时操作HashMap(否则会产生死循环),建议使用ConcurrentHashMap。

(4) JDK1.8引入红黑树大程度优化了HashMap的性能。

参考

https://zhuanlan.zhihu.com/p/21673805
https://www.cnblogs.com/chengxiao/p/6059914.html

猜你喜欢

转载自blog.csdn.net/Felix_ar/article/details/83750933
今日推荐