Python环境安装及数据基本预处理-大数据ML样本集案例实战

版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。期待加入IOT时代最具战斗力的团队。QQ邮箱地址:[email protected],如有任何学术交流,可随时联系。 https://blog.csdn.net/shenshouniu/article/details/84891688

版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。QQ邮箱地址:[email protected],如有任何学术交流,可随时联系。

1 Python环境安装


在这里插入图片描述

  • shift + Enter :换行
  • ctrl + Enter :执行

2 Python IDE 环境安装



3 数据预处理

  • 头几行展示

      import numpy as np 
      import pandas as pd 
      import matplotlib.pyplot as plt
      %matplotlib inline
      
      from sklearn.ensemble import RandomForestClassifier
      from sklearn.cross_validation import KFold
      
      # import data
      filename= "C:\\ML\\MLData\\data.csv"
      raw = pd.read_csv(filename)
      print (raw.shape)
      raw.head()
    

  • 尾几行展示

  • 去除空值


  • matplot列属性绘制分布

      #plt.subplot(211) first is raw second Column
      # 透明程度 (颜色深度和密度)
      alpha = 0.02
      # 指定图大概占用的区域
      plt.figure(figsize=(10,10))
      # loc_x and loc_y(一行两列第一个位置)
      plt.subplot(121)
      # scatter 散点图
      plt.scatter(kobe.loc_x, kobe.loc_y, color='R', alpha=alpha)
      plt.title('loc_x and loc_y')
      # lat and lon(一行两列第二个位置)
      plt.subplot(122)
      plt.scatter(kobe.lon, kobe.lat, color='B', alpha=alpha)
      plt.title('lat and lon')
    

  • 角度和极坐标预处理

      raw['dist'] = np.sqrt(raw['loc_x']**2 + raw['loc_y']**2)
      loc_x_zero = raw['loc_x'] == 0
      #print (loc_x_zero)
      raw['angle'] = np.array([0]*len(raw))
      raw['angle'][~loc_x_zero] = np.arctan(raw['loc_y'][~loc_x_zero] / raw['loc_x'][~loc_x_zero])
      raw['angle'][loc_x_zero] = np.pi / 2 
    
  • 时间处理

      raw['remaining_time'] = raw['minutes_remaining'] * 60 + raw['seconds_remaining']
    
  • 属性唯一值及分组统计打印出来

      投篮方式
      print(kobe.action_type.unique())
      print(kobe.combined_shot_type.unique())
      print(kobe.shot_type.unique())
      分组统计
      print(kobe.shot_type.value_counts())
    

  • 按列进行特殊符号处理

      kobe['season'].unique()  
      
      array(['2000-01', '2001-02', '2002-03', '2003-04', '2004-05', '2005-06',
             '2006-07', '2007-08', '2008-09', '2009-10', '2010-11', '2011-12',
             '2012-13', '2013-14', '2014-15', '2015-16', '1996-97', '1997-98',
             '1998-99', '1999-00'], dtype=object)
    
      raw['season'] = raw['season'].apply(lambda x: int(x.split('-')[1]) )
      raw['season'].unique()
      
      array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 97,
            98, 99,  0], dtype=int64)
    
  • pd的DataFrame使用技巧(matchup两队对决,opponent对手是谁)

      pd.DataFrame({'matchup':kobe.matchup, 'opponent':kobe.opponent})
    

版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。QQ邮箱地址:[email protected],如有任何学术交流,可随时联系。

  • 属性相关性展示是否是线性关系(位置和投篮位置)

      plt.figure(figsize=(5,5))
      
      plt.scatter(raw.dist, raw.shot_distance, color='blue')
      plt.title('dist and shot_distance')
    

  • pd的groupby对kebe的投射位置进行分组

      gs = kobe.groupby('shot_zone_area')
      print (kobe['shot_zone_area'].value_counts())
      print (len(gs))
      
      Center(C)                11289
      Right Side Center(RC)     3981
      Right Side(R)             3859
      Left Side Center(LC)      3364
      Left Side(L)              3132
      Back Court(BC)              72
      Name: shot_zone_area, dtype: int64
      6
    
  • 区域划分拉链展示

      import matplotlib.cm as cm
      plt.figure(figsize=(20,10))
      
      def scatter_plot_by_category(feat):
          alpha = 0.1
          gs = kobe.groupby(feat)
          cs = cm.rainbow(np.linspace(0, 1, len(gs)))
          for g, c in zip(gs, cs):
              plt.scatter(g[1].loc_x, g[1].loc_y, color=c, alpha=alpha)
      
      # shot_zone_area
      plt.subplot(131)
      scatter_plot_by_category('shot_zone_area')
      plt.title('shot_zone_area')
      
      # shot_zone_basic
      plt.subplot(132)
      scatter_plot_by_category('shot_zone_basic')
      plt.title('shot_zone_basic')
      
      # shot_zone_range
      plt.subplot(133)
      scatter_plot_by_category('shot_zone_range')
      plt.title('shot_zone_range')
    

  • 去除某一列

      drops = ['shot_id', 'team_id', 'team_name', 'shot_zone_area', 'shot_zone_range', 'shot_zone_basic', \
               'matchup', 'lon', 'lat', 'seconds_remaining', 'minutes_remaining', \
               'shot_distance', 'loc_x', 'loc_y', 'game_event_id', 'game_id', 'game_date']
      for drop in drops:
          raw = raw.drop(drop, 1)
    
  • 独热编码(one-hot编码)(一列变多列(0000000)prefix指定添加列前缀)

      print (raw['combined_shot_type'].value_counts())
      pd.get_dummies(raw['combined_shot_type'], prefix='combined_shot_type')[0:2]
      
      Jump Shot    23485
      Layup         5448
      Dunk          1286
      Tip Shot       184
      Hook Shot      153
      Bank Shot      141
      Name: combined_shot_type, dtype: int64
    

  • 独热编码之后,拼接成1列后,删除对应列。

      categorical_vars = ['action_type', 'combined_shot_type', 'shot_type', 'opponent', 'period', 'season']
      for var in categorical_vars:
          raw = pd.concat([raw, pd.get_dummies(raw[var], prefix=var)], 1)
          raw = raw.drop(var, 1)
    

版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。QQ邮箱地址:[email protected],如有任何学术交流,可随时联系。

4 模型建立

  • 1 测试集和训练集准备

      train_kobe = raw[pd.notnull(raw['shot_made_flag'])]
      train_kobe = train_kobe.drop('shot_made_flag', 1)
      train_label = train_kobe['shot_made_flag']
      test_kobe = raw[pd.isnull(raw['shot_made_flag'])]
      test_kobe = test_kobe.drop('shot_made_flag', 1)
    
  • 2 随机森林分类

      from sklearn.ensemble import RandomForestRegressor
      from sklearn.metrics import confusion_matrix,log_loss
      import time
      
      # find the best n_estimators for RandomForestClassifier
      print('Finding best n_estimators for RandomForestClassifier...')
      min_score = 100000
      best_n = 0
      scores_n = []
      range_n = np.logspace(0,2,num=3).astype(int)
      for n in range_n:
          print("the number of trees : {0}".format(n))
          t1 = time.time()
    
      rfc_score = 0.
      rfc = RandomForestClassifier(n_estimators=n)
      for train_k, test_k in KFold(len(train_kobe), n_folds=10, shuffle=True):
      rfc.fit(train_kobe.iloc[train_k], train_label.iloc[train_k])
      #rfc_score += rfc.score(train.iloc[test_k], train_y.iloc[test_k])/10
      pred = rfc.predict(train_kobe.iloc[test_k])
      rfc_score += log_loss(train_label.iloc[test_k], pred) / 10
      scores_n.append(rfc_score)
      if rfc_score < min_score:
      min_score = rfc_score
      best_n = n
      
      t2 = time.time()
      print('Done processing {0} trees ({1:.3f}sec)'.format(n, t2-t1))
      print(best_n, min_score)
    
      # find best max_depth for RandomForestClassifier
      print('Finding best max_depth for RandomForestClassifier...')
      min_score = 100000
      best_m = 0
      scores_m = []
      range_m = np.logspace(0,2,num=3).astype(int)
    

    for m in range_m:
    print(“the max depth : {0}”.format(m))
    t1 = time.time()

      rfc_score = 0.
      rfc = RandomForestClassifier(max_depth=m, n_estimators=best_n)
      for train_k, test_k in KFold(len(train_kobe), n_folds=10, shuffle=True):
          rfc.fit(train_kobe.iloc[train_k], train_label.iloc[train_k])
          #rfc_score += rfc.score(train.iloc[test_k], train_y.iloc[test_k])/10
          pred = rfc.predict(train_kobe.iloc[test_k])
          rfc_score += log_loss(train_label.iloc[test_k], pred) / 10
      scores_m.append(rfc_score)
      if rfc_score < min_score:
          min_score = rfc_score
          best_m = m
      
      t2 = time.time()
      print('Done processing {0} trees ({1:.3f}sec)'.format(m, t2-t1))
      print(best_m, min_score)
    

plt.figure(figsize=(10,5))
plt.subplot(121)
plt.plot(range_n, scores_n)
plt.ylabel('score')
plt.xlabel('number of trees')

plt.subplot(122)
plt.plot(range_m, scores_m)
plt.ylabel('score')
plt.xlabel('max depth')

model = RandomForestClassifier(n_estimators=best_n, max_depth=best_m)
model.fit(train_kobe, train_label)
# 474241623

5 总结

综上所述, numpy与pandas与matplotlit与sklearn四剑客组成了强大的数据分析预处理支持。

秦凯新 于深圳 201812081439

猜你喜欢

转载自blog.csdn.net/shenshouniu/article/details/84891688
今日推荐