代数式变形

版权声明:转载注明出处,部分带(坑)文章谢绝转载。 https://blog.csdn.net/linjiayang2016/article/details/84176809

数列级数

k = 1 k = n ( n + 1 ) 2 \sum\limits_{k=1}^{\infty}k=\dfrac{n(n+1)}{2}

k = 1 n k 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum\limits_{k=1}^{n}k^2=\dfrac{n(n+1)(2n+1)}{6}

k = 1 n k 3 = n 2 ( n + 1 ) 2 4 \sum\limits_{k=1}^{n}k^3=\dfrac{n^2(n+1)^2}{4}

i = 1 n i ( i + 1 ) = n ( n + 1 ) ( n + 2 ) 3 \sum\limits_{i=1}^ni(i+1)=\dfrac{n(n+1)(n+2)}{3}

i = 1 n j = i i + k i = j = n n + k + 1 i k + 2 \sum\limits_{i=1}^n\prod\limits_{j=i}^{i+k}i=\dfrac{\prod\limits_{j=n}^{n+k+1}i}{k+2}

i = 1 n j = 1 i j = n ( n + 1 ) ( n + 2 ) 6 \sum\limits_{i=1}^n\sum\limits_{j=1}^ij=\dfrac{n(n+1)(n+2)}{6}

k = 0 x k = 1 1 x \sum\limits_{k=0}^{\infty}x^k=\dfrac{1}{1-x} ,其中 x < 1 |x|<1

k = 0 n x k = x n + 1 1 x 1 \sum\limits_{k=0}^nx^k=\dfrac{x^{n+1}-1}{x-1} ,其中 x ̸ = 1 x\not=1

i = 1 n i k = 1 i + 1 i = i = 1 n 1 i i = 3 n i 2 \sum\limits_{i=1}^n\dfrac{i}{\prod\limits_{k=1}^{i+1}i}=\dfrac{\prod\limits_{i=1}^{n-1}i\prod\limits_{i=3}^ni}{2}

10。1/1*2+2/2*3+3/2*3*4+......+(n-1)/2*3*4*...*n
=(2*3*4*...*n-1)/2*3*4*...*n
11。1^2+3^2+5^2+..........(2n-1)^2=n(4n^2-1)/3
12。1^3+3^3+5^3+..........(2n-1)^3=n^2(2n^2-1)
13。1^4+2^4+3^4+..........+n^4=n(n+1)(2n+1)(3n^2+3n-1)/30
14。1^5+2^5+3^5+..........+n^5=n^2 (n+1)^2 (2n^2+2n-1) /12
15。1+2+2^2+2^3+......+2^n=2^(n+1) – 1

函数项级数

n = 0 x n n ! = e x , x ( , + ) \sum\limits_{n=0}^{\infty}\dfrac{x^n}{n!}=e^x,x\in (-\infty,+\infty)

n = 0 ( 1 ) n ( 2 n + 1 ) ! x 2 n + 1 = s i n x , x ( , + ) \sum\limits_{n=0}^{\infty}\dfrac{(-1)^n}{(2n+1)!}x^{2n+1}=sinx,x\in (-\infty,+\infty)

扫描二维码关注公众号,回复: 4413448 查看本文章

n = 1 ( 1 ) n ( 2 n ) ! x 2 n = c o s x , x ( , + ) \sum\limits_{n=1}^{\infty}\dfrac{(-1)^n}{(2n)!}x^{2n}=cosx,x\in (-\infty,+\infty)

猜你喜欢

转载自blog.csdn.net/linjiayang2016/article/details/84176809
今日推荐