令人头疼的科研工作

我们引用Tass的文章:

  • Tass, P. A., et al. “Long-lasting desynchronization in rat hippocampal slice induced by coordinated reset stimulation.” Physical Review E 80.1 (2009): 011902.
  • Hauptmann, Christian, and Peter A. Tass. “Restoration of segregated, physiological neuronal connectivity by desynchronizing stimulation.” Journal of neural engineering7.5 (2010): 056008.

在这里插入图片描述

在这里插入图片描述

Tam, H. C., Emily SC Ching, and Pik-Yin Lai. “Reconstructing networks from dynamics with correlated noise.” Physica A: Statistical Mechanics and its Applications 502 (2018): 106-122.

在这里插入图片描述
在这里插入图片描述

The time evolution of the node variables is given by a set of coupled differential equations:
d x i d t = f i ( x i ) + j i A i j h ( x i , x j ) + η i \frac{dx_i}{dt}=f_i(x_i)+\sum_{j\neq i}A_{ij}h(x_i,x_j)+\eta_i

External influences on the system are modelled by a Gaussian correlated noise η i \eta_i that is generated by the Ornstein-Uhlenbeck process:
τ n d η i d t = η i + ξ i \tau_n\frac{d\eta_i}{dt}=-\eta_i+\xi_i

where ξ i ( t ) \xi_i(t) is a zero-mean Gaussian white noise:
< ξ i ( t ) > = 0 , < ξ i ( t ) ξ j ( t ) > = 2 D i j δ ( t t ) <\xi_i(t)>=0,<\xi_i(t)\xi_j(t’)>=2D_{ij}\delta(t-t’)

Thus we have
< η i ( t ) > = 0 , < η i ( t ) η j ( t ) > = D i j τ n e t t / τ n <\eta_i(t)>=0,<\eta_i(t)\eta_j(t’)>=\frac{D_{ij}}{\tau_n}e^{-|t-t’|/\tau_n}

线性化可得:
d d t δ x = Q δ x + η i \frac{d}{dt}\delta x=Q\delta x+\eta_i

对上式积分可得:
δ x ( t ) = e Q t δ x ( 0 ) + 0 t e ( t t ) Q η i ( t ) d t \delta x(t)=e^{Qt}\delta x(0)+\int_0^te^{(t-t’)Q}\eta_i(t’)dt’

Hence we obtain
K τ = < δ x ( t + τ ) δ x ( t ) T > K_{\tau}=<\delta x(t+\tau)\delta x(t)^T>

Q K 0 + K 0 Q T + D ( I τ n Q T ) 1 + ( I τ n Q ) 1 D T = 0 QK_0+K_0Q^T+D(I-\tau_nQ^T)^{-1}+(I-\tau_nQ)^{-1}D^T=0

K τ = e τ Q K 0 + J ( τ ) K_{\tau}=e^{\tau Q}K_0+J(\tau)

J ( τ ) = ( e τ Q e τ / τ n I ) U + τ τ Q V J(\tau)=(e^{\tau Q}-e^{-\tau/\tau_n}I)U+\tau ^{\tau Q}V

U = τ n R D ( I τ n Q T ) 1 U=\tau_nRD(I-\tau_nQ^T)^{-1}

V = [ I ( I + τ n Q ) R ] R D ( I τ n Q T ) 1 V=[I-(I+\tau_nQ)R]RD(I-\tau_nQ^T)^{-1}

R = ( I + τ n Q ) 1 R=(I+\tau_nQ)^{-1}

Replacing τ \tau by 2 τ 2\tau and then by 3 τ 3\tau and after some algebra, we obtain
K 2 τ = S K τ T K 0 K_{2\tau}=SK_{\tau}-TK_0

K 3 τ = S K 2 τ T K τ K_{3\tau}=SK_{2\tau}-TK_{\tau}

S = e Q t + e τ / τ n I S=e^{Qt}+e^{-\tau/\tau_n}I

T = e τ / τ n e Q t T=e^{-\tau/\tau_n}e^{Qt}

Solving Eqs, we then obtain
T = ( K 3 τ K 2 τ K τ 1 K 2 τ ) ( K 0 K τ 1 K 2 τ K τ ) 1 T=(K_{3\tau}-K_{2\tau}K_{\tau}^{-1}K_{2\tau})(K_{0}K_{\tau}^{-1}K_{2\tau}-K_{\tau})^{-1}

S = ( K 2 τ + T K ) ) K τ 1 S=(K_{2\tau}+TK_))K_{\tau}^{-1}

S = e τ / τ n T + e τ / τ n I S=e^{\tau/\tau_n}T+e^{-\tau/\tau_n}I

to estimate the value of e τ / τ n e^{\tau/\tau_n} and thus τ n \tau_n by a least-square fit of the diagonal elements of S S , denoted by μ \mu ,

Q = 1 τ l o g ( μ T ) = 1 τ [ l o g ( μ ) + l o g T ] Q=\frac{1}{\tau}log(\mu T)=\frac{1}{\tau}[log(\mu)+logT]

猜你喜欢

转载自blog.csdn.net/SrdLaplace/article/details/84026689