STL源码剖析---vector

分享一下我老师大神的人工智能教程!零基础,通俗易懂!http://blog.csdn.net/jiangjunshow

也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!

                vector容器概述
      vector的数据安排以及操作方式,与array非常相似。两者的唯一区别在于空间的运用的灵活性。array是静态空间,一旦配置了就不能改变;要换个大(或小)一点的房子,可以,一切琐细都得由客户端自己来:首先配置一块新空间,然后将元素从旧址一一搬往新址,再把原来的空间释还给系统。vector是动态空间,随着元素的加入,它的内部机制会自行扩充空间以容纳新元素。因此,vector的运用对于内存的合理利用与运用的灵活性有很大的帮助,我们再也不必因为害怕空间不足而一开始要求一个大块头的array了,我们可以安心使用array,吃多少用多少。
      vector的实现技术,关键在于其对大小的控制以及重新配置时的数据移动效率。一旦vector的旧有空间满载,如果客户端每新增一个元素,vector的内部只是扩充一个元素的空间,实为不智。因为所谓扩充空间(不论多大),一如稍早所说,是”配置新空间/数据移动/释还旧空间“的大工程,时间成本很高,应该加入某种未雨绸缪的考虑。稍后我们便可看到SGI vector的空间配置策略了。
      另外,由于vector维护的是一个连续线性空间,所以vector支持随机存取
      注意:vector动态增加大小时,并不是在原空间之后持续新空间(因为无法保证原空间之后尚有可供配置的空间),而是以原大小的两倍另外配置一块较大的空间,然后将原内容拷贝过来,然后才开始在原内容之后构造新元素,并释放原空间。因此,对vector的任何操作,一旦引起空间重新配置,指向原vector的所有迭代器就都失效了。这是程序员易犯的一个错误,务需小心。
以下是vector定义的源代码摘录:
#include<iostream>using namespace std;#include<memory.h>  // alloc是SGI STL的空间配置器template <class T, class Alloc = alloc>class vector{public// vector的嵌套类型定义,typedefs用于提供iterator_traits<I>支持 typedef T value_type; typedef value_type* pointer; typedef value_type* iterator; typedef value_type& reference; typedef size_t size_type; typedef ptrdiff_t difference_type;protected// 这个提供STL标准的allocator接口 typedef simple_alloc <value_type, Alloc> data_allocator; iterator start;               // 表示目前使用空间的头 iterator finish;              // 表示目前使用空间的尾 iterator end_of_storage;      // 表示实际分配内存空间的尾 void insert_aux(iterator position, const T& x)// 释放分配的内存空间 void deallocate() {  // 由于使用的是data_allocator进行内存空间的分配,  // 所以需要同样使用data_allocator::deallocate()进行释放  // 如果直接释放, 对于data_allocator内部使用内存池的版本  // 就会发生错误  if (start)   data_allocator::deallocate(start, end_of_storage - start); } void fill_initialize(size_type n, const T& value) {  start = allocate_and_fill(n, value);  finish = start + n;                         // 设置当前使用内存空间的结束点  // 构造阶段, 此实作不多分配内存,  // 所以要设置内存空间结束点和, 已经使用的内存空间结束点相同  end_of_storage = finish; }public// 获取几种迭代器 iterator begin() { return start; } iterator end() { return finish; } // 返回当前对象个数 size_type size() const { return size_type(end() - begin()); } size_type max_size() const { return size_type(-1) / sizeof(T); } // 返回重新分配内存前最多能存储的对象个数 size_type capacity() const { return size_type(end_of_storage - begin()); } bool empty() const { return begin() == end(); } reference operator[](size_type n) { return *(begin() + n); } // 本实作中默认构造出的vector不分配内存空间 vector() : start(0), finish(0), end_of_storage(0) {} vector(size_type n, const T& value) { fill_initialize(n, value); } vector(int n, const T& value) { fill_initialize(n, value); } vector(long n, const T& value) { fill_initialize(n, value); } // 需要对象提供默认构造函数 explicit vector(size_type n) { fill_initialize(n, T()); } vector(const vector<T, Alloc>& x) {  start = allocate_and_copy(x.end() - x.begin(), x.begin(), x.end());  finish = start + (x.end() - x.begin());  end_of_storage = finish; } ~vector() {  // 析构对象  destroy(start, finish);  // 释放内存  deallocate(); } vector<T, Alloc>& operator=(const vector<T, Alloc>& x); // 提供访问函数 reference front() { return *begin(); } reference back() { return *(end() - 1); } //////////////////////////////////////////////////////////////////////////////// // 向容器尾追加一个元素, 可能导致内存重新分配 //////////////////////////////////////////////////////////////////////////////// //                          push_back(const T& x) //                                   | //                                   |---------------- 容量已满? //                                   | //               ---------------------------- //           No  |                          |  Yes //               |                          | //               ↓                          ↓ //      construct(finish, x);       insert_aux(end(), x); //      ++finish;                           | //                                          |------ 内存不足, 重新分配 //                                          |       大小为原来的2倍 //      new_finish = data_allocator::allocate(len);       <stl_alloc.h> //      uninitialized_copy(start, position, new_start);   <stl_uninitialized.h> //      construct(new_finish, x);                         <stl_construct.h> //      ++new_finish; //      uninitialized_copy(position, finish, new_finish); <stl_uninitialized.h> //////////////////////////////////////////////////////////////////////////////// void push_back(const T& x) {  // 内存满足条件则直接追加元素, 否则需要重新分配内存空间  if (finish != end_of_storage)  {   construct(finish, x);   ++finish;  }  else   insert_aux(end(), x); } //////////////////////////////////////////////////////////////////////////////// // 在指定位置插入元素 //////////////////////////////////////////////////////////////////////////////// //                   insert(iterator position, const T& x) //                                   | //                                   |------------ 容量是否足够 && 是否是end()? //                                   | //               ------------------------------------------- //            No |                                         | Yes //               |                                         | //               ↓                                         ↓ //    insert_aux(position, x);                  construct(finish, x); //               |                              ++finish; //               |-------- 容量是否够用? //               | //        -------------------------------------------------- //    Yes |                                                | No //        |                                                | //        ↓                                                | // construct(finish, *(finish - 1));                       | // ++finish;                                               | // T x_copy = x;                                           | // copy_backward(position, finish - 2, finish - 1);        | // *position = x_copy;                                     | //                                                         ↓ // data_allocator::allocate(len);                       <stl_alloc.h> // uninitialized_copy(start, position, new_start);      <stl_uninitialized.h> // construct(new_finish, x);                            <stl_construct.h> // ++new_finish; // uninitialized_copy(position, finish, new_finish);    <stl_uninitialized.h> // destroy(begin(), end());                             <stl_construct.h> // deallocate(); //////////////////////////////////////////////////////////////////////////////// iterator insert(iterator position, const T& x) {  size_type n = position - begin();  if (finish != end_of_storage && position == end())  {   construct(finish, x);   ++finish;  }  else   insert_aux(position, x);  return begin() + n; } iterator insert(iterator position) { return insert(position, T()); } void pop_back() {  --finish;  destroy(finish); } iterator erase(iterator position) {  if (position + 1 != end())   copy(position + 1, finish, position);  --finish;  destroy(finish);  return position; } iterator erase(iterator first, iterator last) {  iterator i = copy(last, finish, first);  // 析构掉需要析构的元素  destroy(i, finish);  finish = finish - (last - first);  return first; } // 调整size, 但是并不会重新分配内存空间 void resize(size_type new_size, const T& x) {  if (new_size < size())   erase(begin() + new_size, end());  else   insert(end(), new_size - size(), x); } void resize(size_type new_size) { resize(new_size, T()); } void clear() { erase(begin(), end()); }protected// 分配空间, 并且复制对象到分配的空间处 iterator allocate_and_fill(size_type n, const T& x) {  iterator result = data_allocator::allocate(n);  uninitialized_fill_n(result, n, x);  return result; } // 提供插入操作 //////////////////////////////////////////////////////////////////////////////// //                 insert_aux(iterator position, const T& x) //                                   | //                                   |---------------- 容量是否足够? //                                   ↓ //              ----------------------------------------- //        Yes   |                                       | No //              |                                       | //              ↓                                       | // 从opsition开始, 整体向后移动一个位置                     | // construct(finish, *(finish - 1));                    | // ++finish;                                            | // T x_copy = x;                                        | // copy_backward(position, finish - 2, finish - 1);     | // *position = x_copy;                                  | //                                                      ↓ //                            data_allocator::allocate(len); //                            uninitialized_copy(start, position, new_start); //                            construct(new_finish, x); //                            ++new_finish; //                            uninitialized_copy(position, finish, new_finish); //                            destroy(begin(), end()); //                            deallocate(); //////////////////////////////////////////////////////////////////////////////// template <class T, class Allocvoid insert_aux(iterator position, const T& x) {  if (finish != end_of_storage)    // 还有备用空间  {   // 在备用空间起始处构造一个元素,并以vector最后一个元素值为其初值   construct(finish, *(finish - 1));   ++finish;   T x_copy = x;   copy_backward(position, finish - 2, finish - 1);   *position = x_copy;  }  else   // 已无备用空间  {   const size_type old_size = size();   const size_type len = old_size != 0 ? 2 * old_size : 1;   // 以上配置元素:如果大小为0,则配置1(个元素大小)   // 如果大小不为0,则配置原来大小的两倍   // 前半段用来放置原数据,后半段准备用来放置新数据   iterator new_start = data_allocator::allocate(len);  // 实际配置   iterator new_finish = new_start;   // 将内存重新配置   try   {    // 将原vector的安插点以前的内容拷贝到新vector    new_finish = uninitialized_copy(start, position, new_start);    // 为新元素设定初值 x    construct(new_finish, x);    // 调整水位    ++new_finish;    // 将安插点以后的原内容也拷贝过来    new_finish = uninitialized_copy(position, finish, new_finish);   }   catch(...)   {    // 回滚操作    destroy(new_start, new_finish);    data_allocator::deallocate(new_start, len);    throw;   }   // 析构并释放原vector   destroy(begin(), end());   deallocate();   // 调整迭代器,指向新vector   start = new_start;   finish = new_finish;   end_of_storage = new_start + len;  } } //////////////////////////////////////////////////////////////////////////////// // 在指定位置插入n个元素 //////////////////////////////////////////////////////////////////////////////// //             insert(iterator position, size_type n, const T& x) //                                   | //                                   |---------------- 插入元素个数是否为0? //                                   ↓ //              ----------------------------------------- //        No    |                                       | Yes //              |                                       | //              |                                       ↓ //              |                                    return; //              |----------- 内存是否足够? //              | //      ------------------------------------------------- //  Yes |                                               | No //      |                                               | //      |------ (finish - position) > n?                | //      |       分别调整指针                              | //      ↓                                               | //    ----------------------------                      | // No |                          | Yes                  | //    |                          |                      | //    ↓                          ↓                      | // 插入操作, 调整指针           插入操作, 调整指针           | //                                                      ↓ //            data_allocator::allocate(len); //            new_finish = uninitialized_copy(start, position, new_start); //            new_finish = uninitialized_fill_n(new_finish, n, x); //            new_finish = uninitialized_copy(position, finish, new_finish); //            destroy(start, finish); //            deallocate(); //////////////////////////////////////////////////////////////////////////////// template <class T, class Allocvoid insert(iterator position, size_type n, const T& x) {  // 如果n为0则不进行任何操作  if (n != 0)  {   if (size_type(end_of_storage - finish) >= n)   {      // 剩下的备用空间大于等于“新增元素的个数”    T x_copy = x;    // 以下计算插入点之后的现有元素个数    const size_type elems_after = finish - position;    iterator old_finish = finish;    if (elems_after > n)    {     // 插入点之后的现有元素个数 大于 新增元素个数     uninitialized_copy(finish - n, finish, finish);     finish += n;    // 将vector 尾端标记后移     copy_backward(position, old_finish - n, old_finish);     fill(position, position + n, x_copy); // 从插入点开始填入新值    }    else    {     // 插入点之后的现有元素个数 小于等于 新增元素个数     uninitialized_fill_n(finish, n - elems_after, x_copy);     finish += n - elems_after;     uninitialized_copy(position, old_finish, finish);     finish += elems_after;     fill(position, old_finish, x_copy);    }   }   else   {   // 剩下的备用空间小于“新增元素个数”(那就必须配置额外的内存)    // 首先决定新长度:就长度的两倍 , 或旧长度+新增元素个数    const size_type old_size = size();    const size_type len = old_size + max(old_size, n);    // 以下配置新的vector空间    iterator new_start = data_allocator::allocate(len);    iterator new_finish = new_start;    __STL_TRY    {     // 以下首先将旧的vector的插入点之前的元素复制到新空间     new_finish = uninitialized_copy(start, position, new_start);     // 以下再将新增元素(初值皆为n)填入新空间     new_finish = uninitialized_fill_n(new_finish, n, x);     // 以下再将旧vector的插入点之后的元素复制到新空间     new_finish = uninitialized_copy(position, finish, new_finish);    }#         ifdef  __STL_USE_EXCEPTIONS    catch(...)    {     destroy(new_start, new_finish);     data_allocator::deallocate(new_start, len);     throw;    }#         endif /* __STL_USE_EXCEPTIONS */    destroy(start, finish);    deallocate();    start = new_start;    finish = new_finish;    end_of_storage = new_start + len;   }  } }};



           

给我老师的人工智能教程打call!http://blog.csdn.net/jiangjunshow

这里写图片描述

猜你喜欢

转载自blog.csdn.net/fguihbfg/article/details/84059522