二叉树的应用

一、层序遍历的应用:

镜像:还需要引入队列,同上一篇博客。

.h

# pragma once
# include<assert.h>
# include<malloc.h>
# include<stdio.h>
# include<stdlib.h>
# include<string.h>
# include"Queue.h"
typedef char BTDataType;
typedef struct BinTreeBTNode
{
	struct BinTreeBTNode* _pLeft;
	struct BinTreeBTNode* _pRight;
	BTDataType _data;
}BTBTNode,*PBTNode;

PBTNode BuyBinTreeBTNode(BTDataType data);
 
void _CreateBinTree(PBTNode* pRoot, BTDataType array[], int size, int* index, BTDataType invalid);
 
void CreateBinTree(PBTNode* pRoot, BTDataType array[], int size, BTDataType invalid);
 
//拷贝一棵树,根加左子树加右子树
PBTNode CopyBinTree(PBTNode pRoot);
 
//二叉树的前需遍历:根+左子树+右子树
void PreOrder(PBTNode pRoot);
 
//中序遍历:左子树+根节点+右子树
void InOrder(PBTNode pRoot);
 
//后序遍历:左子树+右子树+根节点
void PostOrder(PBTNode pRoot);
 
void DestroyBinTree(PBTNode* pRoot);

void MirrorBinTree(PBTNode pRoot);
void MirrorBinTreeNor(PBTNode pRoot);

.c

# include"BinaryTree.h"

 
//#define NULL 0
PBTNode BuyBinTreeNode(DataType data)
{
	PBTNode pNewNode = (PBTNode)malloc(sizeof(Node));
	if (NULL == pNewNode)
	{
		assert(0);
		return NULL;
	}
	pNewNode->_data = data;
	pNewNode->_pLeft = NULL;
	pNewNode->_pRight = NULL;
	return pNewNode;
}
void _CreateBinTree(PBTNode* pRoot, DataType array[], int size, int* index, DataType invalid)
{
	assert(pRoot);//此时pRoot代表外部实参的地址,可以改变指向
	assert(index);
	if (*index < size&&invalid != array[*index]){
		*pRoot = BuyBinTreeNode(array[*index]);
		//创建根节点的左子树
		++(*index);
		_CreateBinTree(&(*pRoot)->_pLeft, array, size, index, invalid);
		//创建根节点的右子树
		++(*index);
		_CreateBinTree(&(*pRoot)->_pRight, array, size, index, invalid);
	}
}
void CreateBinTree(PBTNode* pRoot, DataType array[], int size, DataType invalid)
{
	int index = 0;
	_CreateBinTree(pRoot, array, size, &index, invalid);

}
//拷贝一棵树,根加左子树加右子树
PBTNode CopyBinTree(PBTNode pRoot){
	PBTNode pNewRoot = NULL;
	if (pRoot){
		//拷贝根节点
		pNewRoot = BuyBinTreeNode(pRoot->_data);
		//拷贝根节点的左子树
		if (pRoot->_pLeft)
			pNewRoot->_pLeft = CopyBinTree(pRoot->_pLeft);
		//拷贝根节点的右子树
		if (pRoot->_pRight)
			pNewRoot->_pRight = CopyBinTree(pRoot->_pRight);
	}
	return pNewRoot;
}
//二叉树的前需遍历:根+左子树+右子树
void PreOrder(PBTNode pRoot)
{
	if (pRoot)
	{
		printf("%c ", pRoot->_data);
		PreOrder(pRoot->_pLeft);
		PreOrder(pRoot->_pRight);
	}
}
//中序遍历:左子树+根节点+右子树
void InOrder(PBTNode pRoot)
{
	if (pRoot)
	{

		InOrder(pRoot->_pLeft);
		printf("%c ", pRoot->_data);
		InOrder(pRoot->_pRight);
	}
}
//后序遍历:左子树+右子树+根节点
void PostOrder(PBTNode pRoot)
{
	if (pRoot)
	{

		PostOrder(pRoot->_pLeft);
		PostOrder(pRoot->_pRight);
		printf("%c ", pRoot->_data);
	}
}
void LevelOrder(PBTNode pRoot)
{
	Queue q;
	if (NULL == pRoot)
		return;
	QueueInit(&q);//初始化根节点
	//把根节点的地址加到树里面
	QueuePush(&q, pRoot);
	while (!QueueEmpty(&q)){
		//遍历
		PBTNode pCur = QueueFront(&q);
		printf("%c  ", pCur->_data);
		//QueuePop(&q);出队列的操作也可以放在这个位置上
		//把元素放到队列里
		if (pCur->_pLeft)
			QueuePush(&q, pCur->_pLeft);
		if (pCur->_pRight)
			QueuePush(&q, pCur->_pRight);
		//从队列里面拿出去
		QueuePop(&q);
	}
}
void DestroyBinTree(PBTNode* pRoot)
{
	assert(pRoot);
	if (*pRoot){
		//销毁左子树
		DestroyBinTree(&(*pRoot)->_pLeft);
		//销毁右子树
		DestroyBinTree(&(*pRoot)->_pRight);
		//销毁根节点
		free(*pRoot);
		*pRoot = NULL;
	}
}

void Swap(PBTNode* pLeft, PBTNode* pRight)
{
	PBTNode tmp = *pLeft;
	*pLeft = *pRight;
	*pRight = tmp;
}
//非递归实现
void MirrorBinTreeNor(PBTNode pRoot){
	Queue q;
	if (NULL == pRoot)
		return;
	QueueInit(&q);
	QueuePush(&q, pRoot);
	while (!QueueEmpty(&q))
	{
		//如果当前队列不为空,取对头元素
		PBTNode pCur = QueueFront(&q);
		//交换左右孩子
		Swap(&(pCur->_pLeft),&(pCur->_pRight));
		if (pCur->_pLeft)
			QueuePush(&q, pCur->_pLeft);//将左孩子写入
		if (pCur->_pRight)
			QueuePush(&q, pCur->_pRight);
	}
}
//递归实现镜像
void MirrorBinTree(PBTNode pRoot)
{
	if (pRoot)
	{
		Swap(&(pRoot->_pLeft), &(pRoot->_pRight));
		MirrorBinTree(pRoot->_pLeft);
		MirrorBinTree(pRoot->_pRight);
	}
}
void TestBinTree()
{
	char* str = "ABD###CE##F";
	PBTNode pRoot = NULL, pNewRoot;
	CreateBinTree(&pRoot, str, strlen(str), '#');
	pNewRoot = CopyBinTree(pRoot);

	printf("前序遍历:");
	PreOrder(pRoot);
	printf("\n");

	printf("中序遍历:");
	InOrder(pRoot);
	printf("\n");

	printf("后序遍历:");
	PostOrder(pRoot);
	printf("\n");

	printf("层序遍历:");
	LevelOrder(pRoot);

	MirrorBinTree(pRoot);
	MirrorBinTreeNor(pRoot);
	printf("层序遍历:");
	LevelOrder(pRoot);
}

//A B D # # # C E # 


 

二、

1、求二叉树中结点总的个数;

递归调用的时间复杂度:递归调用总的次数*每次递归调用的次数,一个结点两个指针域,n个结点则有2*n个指针域;每个指针域都是一次函数调用,递归程序总的调用次数为2n,每一次调用了两次,则为4n。所以节点总的个数为O(n)。

int BinTreeSize(PBTNode pRoot)
{
	if (NULL == pRoot)
		return 0;
	int left = BinTreeSize(pRoot->_pLeft);
	int right = BinTreeSize(pRoot->_pRight);
	return left + right + 1;
}

测试的代码:

void TestBinTree()
{
	char* str = "ABD###CE##F";
	PBTNode pRoot = NULL, pNewRoot;
	CreateBinTree(&pRoot, str, strlen(str), '#');
	pNewRoot = CopyBinTree(pRoot);

	printf("前序遍历:");
	PreOrder(pRoot);
	printf("\n");

	printf("中序遍历:");
	InOrder(pRoot);
	printf("\n");

	printf("后序遍历:");
	PostOrder(pRoot);
	printf("\n");

	printf("层序遍历:");
	LevelOrder(pRoot);

	MirrorBinTree(pRoot);
	MirrorBinTreeNor(pRoot);
	printf("层序遍历:");
	LevelOrder(pRoot);
	printf("\n");

	printf("二叉树中结点的个数为:%d\n", BinTreeSize(pRoot));
}

2、二叉树中叶子节点的总的个数

叶子节点:没有孩子的节点,度为0的节点

int BinTreeLeaf(PBTNode pRoot)
{
	if (pRoot == NULL)
		return 0;
	if (NULL == pRoot->_pLeft&&NULL == pRoot->_pRight)
		//左孩子和右孩子都为空,则只有一个叶子节点
		return 1;

	return BinTreeLeaf(pRoot->_pLeft) + BinTreeLeaf(pRoot->_pRight);
}

测试代码:

	printf("二叉树中叶子结点的个数为:%d\n", BinTreeLeaf(pRoot));

3、判断一个节点是否在一棵二叉树中

struct BinaryTree
{
    BinaryTree(char data)
    :_pLeft(NULL)
    , _pRight(NULL)
    , _data(data)
    {}
    BinaryTree *_pLeft;
    BinaryTree *_pRight;
    char _data;
};
//创建二叉树
void CreateBinaryTree(BinaryTree *&pRoot, char *str,size_t size, size_t &index)
{
    if (index < size && str[index] != '#')
    {
        pRoot = new BinaryTree(str[index]);
        CreateBinaryTree(pRoot->_pLeft, str, size, ++index);
        CreateBinaryTree(pRoot->_pRight, str, size, ++index);
    }
}
//递归实现
bool IsNodeInTree(BinaryTree *pRoot,BinaryTree *pNode)
{
    if (NULL == pRoot || NULL == pNode)
        return false;
    if (pRoot->_data == pNode->_data)
        return true;
    if (IsNodeInTree(pRoot->_pLeft, pNode) || IsNodeInTree(pRoot->_pRight, pNode))
        return true;

        return false;
}

4、获取一个节点的双亲节点

5、获取一个节点的左孩子节点

6、获取一个节点的右孩子节点

7、判断一棵二叉树是否为完全二叉树(层序遍历变形)

1>如果树为空,则直接返回错
2>如果树不为空:层序遍历二叉树
2.1>如果一个结点左右孩子都不为空,则pop该节点,将其左右孩子入队列;
2.1>如果遇到一个结点,左孩子为空,右孩子不为空,则该树一定不是完全二叉树;
2.2>如果遇到一个结点,左孩子不为空,右孩子为空;或者左右孩子都为空;则该节点之后的队列中的结点都为叶子节点;该树才是完全二叉树,否则就不是完全二叉树;

int IsCompleteBinTree(pNode pRoot)
{
	Queue q;
	int flag=0;
	if (NULL==pRoot)
		return 1;



	QueueInit(&q);
	QueuePush(&q,pRoot);


	while (!QueueEmpty(&q))
	{
		pNode pCur=QueueFront(&q);
		if (flag)
		{
			if (pCur->_pLeft||pCur->_pRight)
				return 0;

		}

		else
		{
			if (pCur ->_pLeft&&pCur->_pRight)
			{
				QueuePush(&q,pRoot->_pLeft);
				QueuePush(&q,pRoot->_pRight);
			}
			else if (pCur->_pRight)
				return 0;
			else if(pCur->_pLeft) {
				QueuePush(&q,pRoot->_pLeft);
				flag=1;
			}
			else 
				flag=1;
			QueuePop(&q);
		}
	}
	return 1;
}
bool IsCompleteTree(BinaryTreeNode *pRoot)
{
         if(pRoot == NULL)
               return false;

          queue<BinaryTreeNode*> q;
          q.push(pRoot);
          BinaryTreeNode* pCur = q.front();
          while(pCur != NULL)
          {
               q.pop();
               q.push(pCur -> left);
               q.push(pCur -> right);
               pCur = q.front();
          }

          q.pop();//把空pop出来
          //因为以经有一个空了,所以只要头不为空就不是完全二叉树
          while(! q.empty())
          {
               if(q.front() != NULL)
                    return false;
               q.pop();
          }
          return true;
}

猜你喜欢

转载自blog.csdn.net/xuruhua/article/details/81191974