MT【252】椭圆内接三角形内切圆半径

已知椭圆$\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$($a > b > 0$),${F_1}$、${F_2}$为其左右焦点,$P$为椭圆$C$上任意一点,$I$为$\triangle P{F_1}{F_2}$内切圆圆心,点$G$满足$\overrightarrow {P{F_1}}+ \overrightarrow {P{F_2}}= 3\overrightarrow {PG} $且$\overrightarrow {GI}= \lambda \overrightarrow {{F_1}{F_2}} $($\lambda\in {\mathbb {R}}$且$\lambda\ne 0$),则椭圆的离心率是___

分析:如图,因为$\overrightarrow {GI}= \lambda \overrightarrow {{F_1}{F_2}} $,所以${y_G} = {y_I}=r,y_P=3y_G=3r$.


由$rp=S_{\Delta F_1F_2P},\textbf{其中}p\textbf{半周长}$,故$r*(a+c)=\dfrac{1}{2}|F_1F_2|y_P$
即$r*(a+c)=\dfrac{1}{2}*2a*3r$得$e=\dfrac{1}{2}$

猜你喜欢

转载自www.cnblogs.com/mathstudy/p/9950354.html