040间接粗对准学习笔记

版权声明:本文系原创文章,没有版权,随意转载,不用告知! https://blog.csdn.net/Pro2015/article/details/83894018

间接粗对准实际上是在解析粗对准的基础上进行的改进,增强了一下抗角晃动的能力。相对于解析粗对准直接求解姿态阵,间接粗对准将姿态阵进行链式分解,如下:
C b n = C n 0 n C b 0 n 0 C b b 0 C_b^n = C_{n_0}^n C_{b_0}^{n_0} C_b^{b_0}

其中 n 0 n_0 b 0 b_0 系分别是与 n n b b 系在 t 0 t_0 时刻重合的惯性系。这样 C n 0 n C_{n_0}^n C b b 0 C_b^{b_0} 就比较好确定,所以粗对准的工作就是确定 C b 0 n 0 C_{b_0}^{n_0} 。而且因为 C b 0 n 0 C_{b_0}^{n_0} 是两个惯性系之间的姿态阵,不存在晃动的问题,所以增加了抗干扰能力。

接下来就是建立两个惯性系之间的对应矢量关系:
G 1 n 0 = C b 0 n 0 F ~ 1 b 0 G 2 n 0 = C b 0 n 0 F ~ 2 b 0 G_1^{n_0} = C_{b_0}^{n_0} \tilde F_1^{b_0}\\ G_2^{n_0} = C_{b_0}^{n_0} \tilde F_2^{b_0}\\

其中:
F ~ 1 b 0 = 0 t 1 C b b 0 f ~ s f b d t F ~ 2 b 0 = t 1 t 2 C b b 0 f ~ s f b d t G 1 n 0 = 0 t 1 g n 0 d t G 2 n 0 = t 1 t 2 g n 0 d t \tilde F_1^{b_0}= \int _0^{t_1} C_b^{b_0} \tilde f_{sf}^b dt\\ \tilde F_2^{b_0}= \int _{t_1}^{t_2} C_b^{b_0} \tilde f_{sf}^b dt\\ G_1^{n_0}= -\int _0^{t_1} g^{n_0} dt\\ G_2^{n_0}= -\int _{t_1}^{t_2} g^{n_0} dt\\

可得:
C ^ b 0 n 0 = [ G 1 n 0 G 1 n 0 G 1 n 0 × G 2 n 0 G 1 n 0 × G 2 n 0 G 1 n 0 × G 2 n 0 × G 1 n 0 G 1 n 0 × G 2 n 0 × G 1 n 0 ] [ ( F ~ 1 b 0 F ~ 1 b 0 ) T ( F ~ 1 b 0 × F ~ 2 b 0 F ~ 1 b 0 × F ~ 2 b 0 ) T ( F ~ 1 b 0 × F ~ 2 b 0 × F ~ 1 b 0 F ~ 1 b 0 × F ~ 2 b 0 × F ~ 1 b 0 ) T ] \hat C_{b_0}^{n_0} = \begin{bmatrix} \frac{G_1^{n_0}}{|G_1^{n_0}|} & \frac{G_1^{n_0} \times G_2^{n_0}}{|G_1^{n_0} \times G_2^{n_0}|} & \frac{G_1^{n_0} \times G_2^{n_0} \times G_1^{n_0}}{|G_1^{n_0} \times G_2^{n_0} \times G_1^{n_0}|} \end{bmatrix} \begin{bmatrix} (\frac{\tilde F_1^{b_0} }{|\tilde F_1^{b_0}|})^T\\ \\ (\frac{\tilde F_1^{b_0} \times \tilde F_2^{b_0}}{|\tilde F_1^{b_0} \times \tilde F_2^{b_0}|})^T\\ \\ (\frac{\tilde F_1^{b_0} \times \tilde F_2^{b_0} \times \tilde F_1^{b_0}}{|\tilde F_1^{b_0} \times \tilde F_2^{b_0} \times \tilde F_1^{b_0}|})^T\\ \end{bmatrix}

最后:
C ^ b n = C n 0 n C ^ b 0 n 0 C b b 0 \hat C_b^n = C_{n_0}^n \hat C_{b_0}^{n_0} C_b^{b_0}

猜你喜欢

转载自blog.csdn.net/Pro2015/article/details/83894018