thinking in java (十五) ----- 集合之HahsMap

HashMap介绍

  • HashMap简介

HashMap是一个散列表,存储的内容是键值对映射(key-value)k-v

HashMap继承于AbstractMap,实现了Map,Cloneable,Serializable接口

HashMap的实现是不同步的(线程不安全)

HashMap的实例有俩参数影响性能:“初始容量”和“加载因子”,容量是哈希表中通的数量,初始容量只是哈希表在创建时的容量,加载因子是哈希表在其容量自动增加之前可以达到多满的尺度。当哈希表中的条目超出了加载因子与当前容量的乘积时,则要对该哈希表进行rehash操作(内部重建内部数据结构)从而哈希表拥有两倍的桶数,通常默认的加载因子是0.75,这是在时间和空间成本上的一种折中。

  • 构造函数

HashMap有四个构造函数

// 默认构造函数。
HashMap()

// 指定“容量大小”的构造函数
HashMap(int capacity)

// 指定“容量大小”和“加载因子”的构造函数
HashMap(int capacity, float loadFactor)

// 包含“子Map”的构造函数
HashMap(Map<? extends K, ? extends V> map)

capacity容量,loaFactor加载因子,默认0.75.

HashMap数据结构

HashMap的继承关系

java.lang.Object
   ↳     java.util.AbstractMap<K, V>
         ↳     java.util.HashMap<K, V>

public class HashMap<K,V>
    extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable { }

HashMap与Map的关系

从图中可以看出:

1,HashMap继承与AbstractMap类,实现了Map接口,Map是键值对接口,AbstractMap实现了键值对的通用函数接口

2,HashMap是通过“拉链法”实现的哈希表,包括几个重要成员,table,size,threshold,loadFactor,modCount

table是一个Entry[] 数组类型,而Entry实际上是一个单向链表,哈希表的键值对都是存储在Entry数组中的

size是HashMap的带下,它是HashMap实际保存键值对的数量

threshold是HashMap的阈值,用于判断是否需要调整HashMap的容量,threshold的值=容量 乘以 加载因子。当HashMap中的储存数量达到了threshold,就需要将HashMap的容量加

loadFactor  加载因子

modCount 用来实现fail-fast机制的??、、?

源码解析

说明:我们首先需要了解,HashMap就是一个散列表,他是通过拉链法来解决哈希冲突的,拉链法就是把具有相同散列地址的关键字(同义词)值放在同一个单链表中(自行百度)

HashMap的拉链法相关内容

  • HashMap数据储存数组
transient Entry[] table;
  • 数据节点Entry的结构数据
  • static class Entry<K,V> implements Map.Entry<K,V> {
        final K key;
        V value;
        // 指向下一个节点
        Entry<K,V> next;
        final int hash;
    
        // 构造函数。
        // 输入参数包括"哈希值(h)", "键(k)", "值(v)", "下一节点(n)"
        Entry(int h, K k, V v, Entry<K,V> n) {
            value = v;
            next = n;
            key = k;
            hash = h;
        }
    
        public final K getKey() {
            return key;
        }
    
        public final V getValue() {
            return value;
        }
    
        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }
    
        // 判断两个Entry是否相等
        // 若两个Entry的“key”和“value”都相等,则返回true。
        // 否则,返回false
        public final boolean equals(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry e = (Map.Entry)o;
            Object k1 = getKey();
            Object k2 = e.getKey();
            if (k1 == k2 || (k1 != null && k1.equals(k2))) {
                Object v1 = getValue();
                Object v2 = e.getValue();
                if (v1 == v2 || (v1 != null && v1.equals(v2)))
                    return true;
            }
            return false;
        }
    
        // 实现hashCode()
        public final int hashCode() {
            return (key==null   ? 0 : key.hashCode()) ^
                   (value==null ? 0 : value.hashCode());
        }
    
        public final String toString() {
            return getKey() + "=" + getValue();
        }
    
        // 当向HashMap中添加元素时,绘调用recordAccess()。
        // 这里不做任何处理
        void recordAccess(HashMap<K,V> m) {
        }
    
        // 当从HashMap中删除元素时,绘调用recordRemoval()。
        // 这里不做任何处理
        void recordRemoval(HashMap<K,V> m) {
        }
    }

    从中我们可以看出,Entry实际上是一个单向链表,这也是为什么我们说HashMap是通过拉链法解决哈希冲突的,Entry实现了Map.Entry 接口,就是实现了getKey,getValue,setValue,equals,hashcode等方法,这些都是基本的KV操作方法

  • HashMap的构造函数

一共有四个构造函数

// 默认构造函数。
public HashMap() {
    // 设置“加载因子”
    this.loadFactor = DEFAULT_LOAD_FACTOR;
    // 设置“HashMap阈值”,当HashMap中存储数据的数量达到threshold时,就需要将HashMap的容量加倍。
    threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
    // 创建Entry数组,用来保存数据
    table = new Entry[DEFAULT_INITIAL_CAPACITY];
    init();
}

// 指定“容量大小”和“加载因子”的构造函数
public HashMap(int initialCapacity, float loadFactor) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                           initialCapacity);
    // HashMap的最大容量只能是MAXIMUM_CAPACITY
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                           loadFactor);

    // Find a power of 2 >= initialCapacity
    int capacity = 1;
    while (capacity < initialCapacity)
        capacity <<= 1;

    // 设置“加载因子”
    this.loadFactor = loadFactor;
    // 设置“HashMap阈值”,当HashMap中存储数据的数量达到threshold时,就需要将HashMap的容量加倍。
    threshold = (int)(capacity * loadFactor);
    // 创建Entry数组,用来保存数据
    table = new Entry[capacity];
    init();
}

// 指定“容量大小”的构造函数
public HashMap(int initialCapacity) {
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

// 包含“子Map”的构造函数
public HashMap(Map<? extends K, ? extends V> m) {
    this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                  DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
    // 将m中的全部元素逐个添加到HashMap中
    putAllForCreate(m);
}

HashMap主要对外接口

  • clear()方法

clear方法的作用是清除HashMap,他是将所有的元素设置为null,

public void clear() {
    modCount++;
    Entry[] tab = table;
    for (int i = 0; i < tab.length; i++)
        tab[i] = null;
    size = 0;
}
  • containKey()方法

判断HashMap中,是否包含key.

public boolean containsKey(Object key) {
    return getEntry(key) != null;
}

containKey()方法先通过getEntry(try)获取Entry数组,然后判断是否为空

  • getEntry()方法 
final Entry<K,V> getEntry(Object key) {
    // 获取哈希值
    // HashMap将“key为null”的元素存储在table[0]位置,“key不为null”的则调用hash()计算哈希值
    int hash = (key == null) ? 0 : hash(key.hashCode());
    // 在“该hash值对应的链表”上查找“键值等于key”的元素
    for (Entry<K,V> e = table[indexFor(hash, table.length)];
         e != null;
         e = e.next) {
        Object k;
        if (e.hash == hash &&
            ((k = e.key) == key || (key != null && key.equals(k))))
            return e;
    }
    return null;
}

getEntry的作用就是返回键位key的实例,HashMap将键为null的值放在table[0]上,key不为null的放在table的其他位置。

  • containsValue()方法

判断HashMap里面是否含有值为Value的键值对

public boolean containsValue(Object value) {
    // 若“value为null”,则调用containsNullValue()查找
    if (value == null)
        return containsNullValue();

    // 若“value不为null”,则查找HashMap中是否有值为value的节点。
    Entry[] tab = table;
    for (int i = 0; i < tab.length ; i++)
        for (Entry e = tab[i] ; e != null ; e = e.next)
            if (value.equals(e.value))
                return true;
    return false;
}

从中,我们可以看出containsNullValue()分为两步进行处理:第一,若“value为null”,则调用containsNullValue()。第二,若“value不为null”,则查找HashMap中是否有值为value的节点。

  • entrySet()、values()、keySet()遍历

这三个的源码大致相似。以entrySet()为例。

// 返回“HashMap的Entry集合”
public Set<Map.Entry<K,V>> entrySet() {
    return entrySet0();
}

// 返回“HashMap的Entry集合”,它实际是返回一个EntrySet对象
private Set<Map.Entry<K,V>> entrySet0() {
    Set<Map.Entry<K,V>> es = entrySet;
    return es != null ? es : (entrySet = new EntrySet());
}

// EntrySet对应的集合
// EntrySet继承于AbstractSet,说明该集合中没有重复的EntrySet。
private final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
    public Iterator<Map.Entry<K,V>> iterator() {
        return newEntryIterator();
    }
    public boolean contains(Object o) {
        if (!(o instanceof Map.Entry))
            return false;
        Map.Entry<K,V> e = (Map.Entry<K,V>) o;
        Entry<K,V> candidate = getEntry(e.getKey());
        return candidate != null && candidate.equals(e);
    }
    public boolean remove(Object o) {
        return removeMapping(o) != null;
    }
    public int size() {
        return size;
    }
    public void clear() {
        HashMap.this.clear();
    }
}

可以看出entrySet中最主要的方法是 EntryIterator()方法,

// 返回一个“entry迭代器”
Iterator<Map.Entry<K,V>> newEntryIterator()   {
    return new EntryIterator();
}

// Entry的迭代器
private final class EntryIterator extends HashIterator<Map.Entry<K,V>> {
    public Map.Entry<K,V> next() {
        return nextEntry();
    }
}

// HashIterator是HashMap迭代器的抽象出来的父类,实现了公共了函数。
// 它包含“key迭代器(KeyIterator)”、“Value迭代器(ValueIterator)”和“Entry迭代器(EntryIterator)”3个子类。
private abstract class HashIterator<E> implements Iterator<E> {
    // 下一个元素
    Entry<K,V> next;
    // expectedModCount用于实现fast-fail机制。
    int expectedModCount;
    // 当前索引
    int index;
    // 当前元素
    Entry<K,V> current;

    HashIterator() {
        expectedModCount = modCount;
        if (size > 0) { // advance to first entry
            Entry[] t = table;
            // 将next指向table中第一个不为null的元素。
            // 这里利用了index的初始值为0,从0开始依次向后遍历,直到找到不为null的元素就退出循环。
            while (index < t.length && (next = t[index++]) == null)
                ;
        }
    }

    public final boolean hasNext() {
        return next != null;
    }

    // 获取下一个元素
    final Entry<K,V> nextEntry() {
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
        Entry<K,V> e = next;
        if (e == null)
            throw new NoSuchElementException();

        // 注意!!!
        // 一个Entry就是一个单向链表
        // 若该Entry的下一个节点不为空,就将next指向下一个节点;
        // 否则,将next指向下一个链表(也是下一个Entry)的不为null的节点。
        if ((next = e.next) == null) {
            Entry[] t = table;
            while (index < t.length && (next = t[index++]) == null)
                ;
        }
        current = e;
        return e;
    }

    // 删除当前元素
    public void remove() {
        if (current == null)
            throw new IllegalStateException();
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
        Object k = current.key;
        current = null;
        HashMap.this.removeEntryForKey(k);
        expectedModCount = modCount;
    }

}

我们通过entrySet中的next方法去遍历HashMap时,实际上调用的是nextEntry,而nexrEntry的实现方式,先遍历Entry(根据Entry在table在table中的序号,从小到大遍历)

,HashMap由数组+链表组成的,数组是HashMap的主体,链表则是主要为了解决哈希冲突而存在的,如果定位到的数组位置不含链表(当前entry的next指向null),那么对于查找,添加等操作很快,仅需一次寻址即可;如果定位到的数组包含链表,对于添加操作,其时间复杂度为O(n),首先遍历链表,存在即覆盖,否则新增;对于查找操作来讲,仍需遍历链表,然后通过key对象的equals方法逐一比对查找。所以,性能考虑,HashMap中的链表出现越少,性能才会越好。

猜你喜欢

转载自blog.csdn.net/sinat_38430122/article/details/83511445