聊聊高并发(四十)解析java.util.concurrent各个组件(十六) ThreadPoolExecutor源码分析

ThreadPoolExecutor是Executor执行框架最重要的一个实现类,提供了线程池管理和任务管理是两个最基本的能力。这篇通过分析ThreadPoolExecutor的源码来看看如何设计和实现一个基于生产者消费者模型的执行器。


生产者消费者模型

生产者消费者模型包含三个角色:生产者,工作队列,消费者。对于ThreadPoolExecutor来说,

1. 生产者是任务的提交者,是外部调用ThreadPoolExecutor的线程

2. 工作队列是一个阻塞队列的接口,具体的实现类可以有很多种。BlockingQueue<Runnable> workQueue;

3. 消费者是封装了线程的Worker类的集合。HashSet<Worker> workers = new HashSet<Worker>();



主要属性

明确了ThreadPoolExecutor的基本执行模型之后,来看下它的几个主要属性:

1. private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));    一个32位的原子整形作为线程池的状态控制描述符。低29位作为工作者线程的数量。所以工作者线程最多有2^29 -1个。高3位来保持线程池的状态。ThreadPoolExecutor总共有5种状态:

     *   RUNNING:  可以接受新任务并执行
     *   SHUTDOWN: 不再接受新任务,但是仍然执行工作队列中的任务
     *   STOP:     不再接受新任务,不执行工作队列中的任务,并且中断正在执行的任务
     *   TIDYING:  所有任务被终止,工作线程的数量为0,会去执行terminated()钩子方法
     *   TERMINATED: terminated()执行结束


下面是一系列ctl这个变量定义和工具方法

 private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
    private static final int COUNT_BITS = Integer.SIZE - 3;
    private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

    // runState is stored in the high-order bits
    private static final int RUNNING    = -1 << COUNT_BITS;
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    private static final int STOP       =  1 << COUNT_BITS;
    private static final int TIDYING    =  2 << COUNT_BITS;
    private static final int TERMINATED =  3 << COUNT_BITS;

    // Packing and unpacking ctl
    private static int runStateOf(int c)     { return c & ~CAPACITY; }
    private static int workerCountOf(int c)  { return c & CAPACITY; }
    private static int ctlOf(int rs, int wc) { return rs | wc; }

    private static boolean runStateLessThan(int c, int s) {
        return c < s;
    }

    private static boolean runStateAtLeast(int c, int s) {
        return c >= s;
    }

    private static boolean isRunning(int c) {
        return c < SHUTDOWN;
    }

    private boolean compareAndIncrementWorkerCount(int expect) {
        return ctl.compareAndSet(expect, expect + 1);
    }

    private boolean compareAndDecrementWorkerCount(int expect) {
        return ctl.compareAndSet(expect, expect - 1);
    }

    private void decrementWorkerCount() {
        do {} while (! compareAndDecrementWorkerCount(ctl.get()));
    }

2. private final BlockingQueue<Runnable> workQueue; 工作队列,采用了BlockingQueue阻塞队列的接口,具体实现类可以按照不同的策略来选择,比如有边界的ArrayBlockingQueue,无边界的LinkedBlockingQueue。

3. private final ReentrantLock mainLock = new ReentrantLock();  控制ThreadPoolExecutor的全局可重入锁,所有需要同步的操作都要被这个锁保护

4. private final Condition termination = mainLock.newCondition(); mainLock的条件队列,来进行wait()和notify()等条件操作

5. private final HashSet<Worker> workers = new HashSet<Worker>();  工作线程集合

6. private volatile ThreadFactory threadFactory; 创建线程的工厂,可以自定义线程创建的逻辑

7. private volatile RejectedExecutionHandler handler;  拒绝执行任务的处理器,可以自定义拒绝的策略

8. private volatile long keepAliveTime;   空闲线程的存活时间。可以根据这个存活时间来判断空闲线程是否等待超时,然后采取相应的线程回收操作

9. private volatile boolean allowCoreThreadTimeOut;  是否允许coreThread线程超时回收

10. private volatile int corePoolSize;  可存活的线程的最小值。如果设置了allowCoreThreadTimeOut, 那么corePoolSize的值可以为0。

11. private volatile int maximumPoolSize;  可存活的线程的最大值


工作线程创建和回收策略

ThreadPoolExecutor通过corePoolSize,maximumPoolSize, allowCoreThreadTimeOut,keepAliveTime等几个参数提供一个灵活的工作线程创建和回收的策略。

创建策略:

1. 当工作线程数量小于corePoolSize时,不管其他线程是否空闲,都创建新的工作线程来处理新加入的任务

2. 当工作线程数量大于corePoolSize,小于maximumPoolSize时,只有当工作队列满了,才会创建新的工作线程来处理新加入的任务。当工作队列有空余时,只把新任务加入队列

3. 把corePoolSize和maximumPoolSize 设置成相同的值时,线程池就是一个固定(fixed)工作线程数的线程。

回收策略:

1. keepAliveTime变量设置了空闲工作线程超时的时间,当工作线程数量超过了corePoolSize后,空闲的工作线程等待超过了keepAliveTime后,会被回收。后面会说怎么确定一个工作线程是否“空闲”。

2. 如果设置了allowCoreThreadTimeOut,那么core Thread也可以被回收,即当core thread也空闲时,也可以被回收,直到工作线程集合为0。


工作队列策略


工作队列BlockingQueue<Runnable> workQueue 是用来存放提交的任务的。它有4个基本的策略,并且根据不同的阻塞队列的实现类可以引入更多的工作队列的策略。

4个基本策略:

1. 当工作线程数量小于corePoolSize时,新提交的任务总是会由新创建的工作线程执行,不入队列

2. 当工作线程数量大于corePoolSize,如果工作队列没满,新提交的任务就入队列

3. 当工作线程数量大于corePoolSize,小于MaximumPoolSize时,如果工作队列满了,新提交的任务就交给新创建的工作线程,不入队列

4. 当工作线程数量大于MaximumPoolSize,并且工作队列满了,那么新提交的任务会被拒绝执行。具体看采用何种拒绝策略


根据不同的阻塞队列的实现类,又有几种额外的策略

1. 采用SynchronousQueue直接将任务传递给空闲的线程执行,不额外存储任务。这种方式需要无限制的MaximumPoolSize,可以创建无限制的工作线程来处理提交的任务。这种方式的好处是任务可以很快被执行,适用于任务到达时间大于任务处理时间的情况。缺点是当任务量很大时,会占用大量线程

2. 采用无边界的工作队列LinkedBlockingQueue。这种情况下,由于工作队列永远不会满,那么工作线程的数量最大就是corePoolSize,因为当工作线程数量达到corePoolSize时,只有工作队列满的时候才会创建新的工作线程。这种方式好处是使用的线程数量是稳定的,当内存足够大时,可以处理足够多的请求。缺点是如果任务直接有依赖,很有可能形成死锁,因为当工作线程被消耗完时,不会创建新的工作现场,只会把任务加入工作队列。并且可能由于内存耗尽引发内存溢出OOM

3. 采用有界的工作队列AraayBlockingQueue。这种情况下对于内存资源是可控的,但是需要合理调节MaximumPoolSize和工作队列的长度,这两个值是相互影响的。当工作队列长度比较小的时,必定会创建更多的线程。而更多的线程会引起上下文切换等额外的消耗。当工作队列大,MaximumPoolSize小的时候,会影响吞吐量,并且会触发拒绝机制。


拒绝执行策略

当Executor处于shutdown状态或者工作线程超过MaximumPoolSize并且工作队列满了之后,新提交的任务将会被拒绝执行。RejectedExecutionHandler接口定义了拒绝执行的策略。具体的策略有

CallerRunsPolicy:由调用者线程来执行被拒绝的任务,属于同步执行

AbortPolicy:中止执行,抛出RejectedExecutionException异常

DiscardPolicy:丢弃任务

DiscardOldestPolicy:丢弃最老的任务

public static class CallerRunsPolicy implements RejectedExecutionHandler {
        /**
         * Creates a {@code CallerRunsPolicy}.
         */
        public CallerRunsPolicy() { }

        /**
         * Executes task r in the caller's thread, unless the executor
         * has been shut down, in which case the task is discarded.
         *
         * @param r the runnable task requested to be executed
         * @param e the executor attempting to execute this task
         */
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            if (!e.isShutdown()) {
                r.run();
            }
        }
    }

    /**
     * A handler for rejected tasks that throws a
     * {@code RejectedExecutionException}.
     */
    public static class AbortPolicy implements RejectedExecutionHandler {
        /**
         * Creates an {@code AbortPolicy}.
         */
        public AbortPolicy() { }

        /**
         * Always throws RejectedExecutionException.
         *
         * @param r the runnable task requested to be executed
         * @param e the executor attempting to execute this task
         * @throws RejectedExecutionException always.
         */
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            throw new RejectedExecutionException("Task " + r.toString() +
                                                 " rejected from " +
                                                 e.toString());
        }
    }

    /**
     * A handler for rejected tasks that silently discards the
     * rejected task.
     */
    public static class DiscardPolicy implements RejectedExecutionHandler {
        /**
         * Creates a {@code DiscardPolicy}.
         */
        public DiscardPolicy() { }

        /**
         * Does nothing, which has the effect of discarding task r.
         *
         * @param r the runnable task requested to be executed
         * @param e the executor attempting to execute this task
         */
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
        }
    }

    /**
     * A handler for rejected tasks that discards the oldest unhandled
     * request and then retries {@code execute}, unless the executor
     * is shut down, in which case the task is discarded.
     */
    public static class DiscardOldestPolicy implements RejectedExecutionHandler {
        /**
         * Creates a {@code DiscardOldestPolicy} for the given executor.
         */
        public DiscardOldestPolicy() { }

        /**
         * Obtains and ignores the next task that the executor
         * would otherwise execute, if one is immediately available,
         * and then retries execution of task r, unless the executor
         * is shut down, in which case task r is instead discarded.
         *
         * @param r the runnable task requested to be executed
         * @param e the executor attempting to execute this task
         */
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            if (!e.isShutdown()) {
                e.getQueue().poll();
                e.execute(r);
            }
        }
    }

工作线程Worker的设计

工作线程没有直接使用Thread,而是采用了Worker类封装了Thread,目的是更好地进行中断控制。Worker直接继承了AbstractQueuedSynchronizer来进行同步操作,它实现了一个不可重入的互斥结构。当它的state属性为0时表示unlock,state为1时表示lock。任务执行时必须在lock状态的保护下,防止出现同步问题。因此当Worker处于lock状态时,表示它正在运行,当它处于unlock状态时,表示它“空闲”。当它空闲超过keepAliveTime时,就有可能被回收。

Worker还实现了Runnable接口, 执行它的线程是Worker包含的Thread对象,在Worker的构造函数可以看到Thread创建时,把Worker对象传递给了它。

private final class Worker
        extends AbstractQueuedSynchronizer
        implements Runnable
    {

        /** Thread this worker is running in.  Null if factory fails. */
        final Thread thread;
        /** Initial task to run.  Possibly null. */
        Runnable firstTask;
        /** Per-thread task counter */
        volatile long completedTasks;

        Worker(Runnable firstTask) {
            setState(-1); // inhibit interrupts until runWorker
            this.firstTask = firstTask;

            // 把Worker对象作为Runnable的实例传递给了新创建Thread对象
            this.thread = getThreadFactory().newThread(this);
        }

        public void run() {
            runWorker(this);
        }

        // Lock methods
        //
        // The value 0 represents the unlocked state.
        // The value 1 represents the locked state.

        protected boolean isHeldExclusively() {
            return getState() != 0;
        }

        protected boolean tryAcquire(int unused) {
            if (compareAndSetState(0, 1)) {
                setExclusiveOwnerThread(Thread.currentThread());
                return true;
            }
            return false;
        }

        protected boolean tryRelease(int unused) {
            setExclusiveOwnerThread(null);
            setState(0);
            return true;
        }

        public void lock()        { acquire(1); }
        public boolean tryLock()  { return tryAcquire(1); }
        public void unlock()      { release(1); }
        public boolean isLocked() { return isHeldExclusively(); }

        void interruptIfStarted() {
            Thread t;
            if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
                try {
                    t.interrupt();
                } catch (SecurityException ignore) {
                }
            }
        }
    }

Worker被它的线程执行时,run方法调用了ThreadPoolExecutor的runWorker方法。

1. wt指向当前执行Worker的run方法的线程,也就是指向了Worker包含的工作线程对象

2. task指向Worker包含的firstTask对象,表示当前要执行的任务

3. 当task不为null或者从工作队列中取到了新任务,那么先加锁w.lock表示正在运行任务。在真正开始执行task.run()之前,先判断线程池的状态是否已经STOP,如果是,就中断Worker的线程。

4. 一旦判断当前线程不是STOP并且工作线程没有中断。那么就开始执行task.run()了。Worker的interruptIfStarted方法可以中断这个Worker的线程,从而中断正在执行任务。

5. beforeExecute(wt, task)和afterExecute(wt,task)是两个钩子方法,支持在任务真正开始执行前就行扩展。

 final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            while (task != null || (task = getTask()) != null) {
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }

工作线程Worker创建和回收的源码

首先看一下ThreadPoolExecutor的execute方法,这个方式是任务提交的入口。可以看到它的逻辑符合之前说的工作线程创建的基本策略

1. 当工作线程数量小于corePoolSize时,通过addWorker(command,true)来新建工作线程处理新建的任务,不入工作队列

2. 当工作线程数量大于等于corePoolSize时,先入队列,使用的是BlockingQueue的offer方法。当工作线程数量为0时,还会通过addWorker(null, false)添加一个新的工作线程

3. 当工作队列满了并且工作线程数量在corePoolSize和MaximumPoolSize之间,就创建新的工作线程去执行新添加的任务。当工作线程数量超过了MaximumPoolSize,就拒绝任务。

public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
   
        int c = ctl.get();
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        else if (!addWorker(command, false))
            reject(command);
    }

可以看到addWorker方法是创建Worker工作线程的所在。

1. retry这个循环判断线程池的状态和当前工作线程数量的边界。如果允许创建工作现场,首先修改ctl变量表示的工作线程的数量

2. 把工作线程添加到workers集合中的操作要在mainLock这个锁的保护下进行。所有和ThreadPoolExecutor状态相关的操作都要在mainLock锁的保护下进行

3. w = new Worker(firstTask); 创建Worker实例,把firstTask作为它当前的任务。firstTask为null时表示先只创建Worker线程,然后去工作队列中取任务执行

4. 把新创建的Worker实例加入到workers集合,修改相关统计变量。

5. 当加入集合成功后,开始启动这个Worker实例。启动的方法是调用Worker封装的Thread的start()方法。之前说了,这个Thread对应的Runnable是Worker本身,会去调用Worker的run方法,然后调用ThreadPoolExecutor的runWorker方法。在runWorker方法中真正去执行任务。

 private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;

            for (;;) {
                int wc = workerCountOf(c);
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            final ReentrantLock mainLock = this.mainLock;
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int c = ctl.get();
                    int rs = runStateOf(c);

                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }

工作线程回收的方法是processWorkerExit(),它在runWorker方法执行结束的时候被调用。之前说了空闲的工作线程可能会在keepAliveTime时间之后被回收。这个逻辑隐含在runWorker方法和getTask方法中,会在下面说如何从工作队列取任务时说明。processWorkerExit方法单纯只是处理工作线程的回收。

1. 结合runWorker方法看,如果Worker执行task.run()的时候抛出了异常,那么completedAbruptly为true,需要从workers集合中把这个工作线程移除掉。

2. 如果是completedAbruptly为true,并且线程池不是STOP状态,那么就创建一个新的Worker工作线程

3. 如果是completedAbruptly为false,并且线程池不是STOP状态,首先检查是否allowCoreThreadTimeout,如果运行,那么最少线程数可以为0,否则是corePoolSize。如果最少线程数为0,并且工作队列不为空,那么最小值为1。最后检查当前的工作线程数量,如果小于最小值,就创建新的工作线程。

 private void processWorkerExit(Worker w, boolean completedAbruptly) {
        if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
            decrementWorkerCount();

        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            completedTaskCount += w.completedTasks;
            workers.remove(w);
        } finally {
            mainLock.unlock();
        }

        tryTerminate();

        int c = ctl.get();
        if (runStateLessThan(c, STOP)) {
            if (!completedAbruptly) {
                int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
                if (min == 0 && ! workQueue.isEmpty())
                    min = 1;
                if (workerCountOf(c) >= min)
                    return; // replacement not needed
            }
            addWorker(null, false);
        }
    }

任务的获取

工作线程从工作队列中取任务的代码在getTask方法中

1. timed变量表示是否要计时,当计时超过keepAliveTime后还没取到任务,就返回null。结合runWorker方法可以知道,当getTask返回null时,该Worker线程会被回收,这就是如何回收空闲工作线程的方法。

timed变量当allowCoreThreadTimeout为true或者当工作线程数大于corePoolSize时为true。

2. 如果timed为true,就用BlockingQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS)方法来计时从队头取任务,否则直接用take()方法从队头取任务

private Runnable getTask() {
        boolean timedOut = false; // Did the last poll() time out?

        retry:
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                decrementWorkerCount();
                return null;
            }

            boolean timed;      // Are workers subject to culling?

            for (;;) {
                int wc = workerCountOf(c);
                timed = allowCoreThreadTimeOut || wc > corePoolSize;

                if (wc <= maximumPoolSize && ! (timedOut && timed))
                    break;
                if (compareAndDecrementWorkerCount(c))
                    return null;
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }

            try {
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
                if (r != null)
                    return r;
                timedOut = true;
            } catch (InterruptedException retry) {
                timedOut = false;
            }
        }
    }

线程池的关闭

线程池有SHUTDOWN, STOP, TIDYING, TERMINATED这几个状态和线程池关闭相关。通常我们把关闭分为优雅的关闭和强制立刻关闭。

所谓优雅的关闭就是调用shutdown()方法,线程池进入SHUTDOWN状态,不在接收新的任务,会把工作队列的任务执行完毕后再结束。

强制立刻关闭就是调用shutdownNow()方法,线程池直接进入STOP状态,会中断正在执行的工作线程,清空工作队列。

1. 在shutdown方法中,先设置线程池状态为SHUTDOWN,然后先去中断空闲的工作线程,再调用onShutdown钩子方法。最后tryTerminate()

2. 在shutdownNow方法中,先设置线程池状态为STOP,然后先中断所有的工作线程,再清空工作队列。最后tryTerminate()。这个方法会把工作队列中的任务返回给调用者处理。

    public void shutdown() {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            checkShutdownAccess();
            advanceRunState(SHUTDOWN);
            interruptIdleWorkers();
            onShutdown(); // hook for ScheduledThreadPoolExecutor
        } finally {
            mainLock.unlock();
        }
        tryTerminate();
    }

      public List<Runnable> shutdownNow() {
        List<Runnable> tasks;
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            checkShutdownAccess();
            advanceRunState(STOP);
            interruptWorkers();
            tasks = drainQueue();
        } finally {
            mainLock.unlock();
        }
        tryTerminate();
        return tasks;
    }

interruptIdleWorkers方法会去中断空闲的工作线程,所谓空闲的工作线程即没有上锁的Worker。

而interruptWorkers方法直接去中断所有的Worker,调用Worker.interruptIfStarted()方法

  private void interruptIdleWorkers(boolean onlyOne) {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            for (Worker w : workers) {
                Thread t = w.thread;
                if (!t.isInterrupted() && w.tryLock()) {
                    try {
                        t.interrupt();
                    } catch (SecurityException ignore) {
                    } finally {
                        w.unlock();
                    }
                }
                if (onlyOne)
                    break;
            }
        } finally {
            mainLock.unlock();
        }
    }

    private void interruptWorkers() {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            for (Worker w : workers)
                w.interruptIfStarted();
        } finally {
            mainLock.unlock();
        }
    }

  void interruptIfStarted() {
            Thread t;
            if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
                try {
                    t.interrupt();
                } catch (SecurityException ignore) {
                }
            }
        }

tryTerminate方法会尝试终止线程池,根据线程池的状态,在相应状态会中断空闲工作线程,调用terminated()钩子方法,设置状态为TERMINATED。

final void tryTerminate() {
        for (;;) {
            int c = ctl.get();
            if (isRunning(c) ||
                runStateAtLeast(c, TIDYING) ||
                (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
                return;
            if (workerCountOf(c) != 0) { // Eligible to terminate
                interruptIdleWorkers(ONLY_ONE);
                return;
            }

            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
                    try {
                        terminated();
                    } finally {
                        ctl.set(ctlOf(TERMINATED, 0));
                        termination.signalAll();
                    }
                    return;
                }
            } finally {
                mainLock.unlock();
            }
            // else retry on failed CAS
        }
    }

最后说明一下,JVM的守护进程只有当所有派生出来的线程都结束后才会退出,使用ThreadPoolExecutor线程池时,如果有的任务一直执行,并且不响应中断,那么会一直占用线程,那么JVM也会一直工作,不会退出。


猜你喜欢

转载自blog.csdn.net/ITer_ZC/article/details/46913841