tensorflow 15:使用卷积和pool识别MNIST数据集

版权声明:本文为博主原创文章,转载请标明原始博文地址。 https://blog.csdn.net/yuanlulu/article/details/83509682

概述

前面的博文讲到的是全连接识别MNIST。这篇博客主要讲解使用卷积和池化(POOL)来和别MNIST。
牵涉的代码来自tensorflow的源码工程,目录是:tensorflow\examples\tutorials\mnist\minist_deep.py。

源码中构建的计算图前向推断结构如下:
在这里插入图片描述
里面有两个卷积层和两个POOL。后面一个非线性全连接和一个线性全连接,中间隔了一个DropOut层。

网络结构细节

卷积

两个卷积层的定义如下:

def conv2d(x, W):
  """conv2d returns a 2d convolution layer with full stride."""
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

.....

  with tf.name_scope('conv1'):
    W_conv1 = weight_variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    
......

  with tf.name_scope('conv2'):
    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)

其定义形式和全连接层很像,只是把tf.matmul换成了tf.nn.conv2d。其参数定义如下:

def conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_format="NHWC", dilations=[1, 1, 1, 1], name=None):
  • input:输入张量。所以对于MNIST这样单个样本是一维的情况,要reshape为二维的。
  • filter:卷积核,要求是一个tensor。对应上述代码中的W。四维形状分别是:[filter_height, filter_width, in_channels, out_channels]。其中in_channels要与输入tensor一致,也就是图片的通道数。out_channels就是输出通道数,这个可以随意指定。
  • strides:指定在各个维度上的卷积步长。"NHWC"格式的步长顺序为:[batch, height, width, channels], "NCHW"格式的步长顺序为:[batch, channels, height, width]。其中后者是caffe常用的格式。一般不会跳过样本或者通道,所以NHWC格式下strides[0]和strides[3]固定为1,中间两个用于指定水平和垂直上的步长。
  • padding:补齐像素的方式。只能为"SAME",或"VALID"之一。前者表示卷积后大小不变,后者表示不填充,该多少多少。
  • use_cudnn_on_gpu:布尔类型,默认为True。

卷积层用的激活函数是relu,这是一个很常用也很好用的激活函数。

POOL

池化层的使用方式

def max_pool_2x2(x):
  """max_pool_2x2 downsamples a feature map by 2X."""
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='SAME')
                        
.......
  # Pooling layer - downsamples by 2X.
  with tf.name_scope('pool1'):
    h_pool1 = max_pool_2x2(h_conv1)

常用的池化有平均池化和最大池化,这里用的最大池化。器原型为:

def max_pool(value, ksize, strides, padding, data_format="NHWC", name=None):
  • value:输入张量。对应上述代码的h_conv2
  • ksize:1维4元张量。定义池化窗口的大小。每一维的意义与strides很像。一般不在batch和通道间做池化,所以一般格式为[1, height, width, 1]。
  • padding:和上面卷积的含义类似。
  • strides:滑动步长,和上面卷积的含义类似。可以看到,上述例子代码里,池化窗口是2X2,滑动步长也是2X2,池化之后tensor的长宽都变为原来的1/2,相当于降采样。虽然卷积过程也可以降采样,但是卷积过程一般都保持大小不变,在池化层做降采样。

参数量的计算

  • 上述卷积层1的卷积核形状是[5, 5, 1, 32],所以卷积层1的可训练参数是5X5X1X32=800个。
  • 两个池化层没有可选连参数,所有参数都是固定的。
  • 卷积层2的卷积核形状是[5, 5, 32, 64],所以其可训练参数是5X5X32X64=51200个。
  • FC1的权重形状是[7 * 7 * 64, 1024],偏执的形状是1024,所以FC1的可训练参数是:7X7X64X1024+1024=3212288,大于320万个,相当惊人。
  • 最后一层FC2,权重的形状是[1024, 10],偏执形状是1024,所以其可训练参数是:1024X10+1024=10250.
  • 和池化层一样,dropout没有可训练参数

和FC1的320万+参数比较,其它层都不是事。所以全连接层相比卷积层,计算量会很恐怖。按照8KB的浮点数存储,大约需要25M。

责任也不全是全连接层的,要怪就怪前一级卷积层输出的特征图太多:64个。

代码研究

损失函数

  # Import data
  mnist = input_data.read_data_sets(FLAGS.data_dir)
  
......

  with tf.name_scope('loss'):
    cross_entropy = tf.losses.sparse_softmax_cross_entropy(
        labels=y_, logits=y_conv)
  cross_entropy = tf.reduce_mean(cross_entropy)

由于载入数据的时候没有指定one_hot参数,所以返回的参数不是独热编码的格式。这时候求取softmac交叉熵的时候要使用稀疏版本(sparse)的函数:sparse_softmax_cross_entropy。

权重和偏执

def weight_variable(shape):
  """weight_variable generates a weight variable of a given shape."""
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)


def bias_variable(shape):
  """bias_variable generates a bias variable of a given shape."""
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)

权重使用阶段正太分布函数truncated_normal来初始化,偏置使用常数0.1初始化。

两次reshape

MNIST的数据每个样本是一维的,所以进入卷积之前要强制reshape为2维。

  with tf.name_scope('reshape'):
    x_image = tf.reshape(x, [-1, 28, 28, 1])

从第二个卷积层出来的tensor,要重新reshpe为1维,因为后面要接全连接层。

  with tf.name_scope('fc1'):
    W_fc1 = weight_variable([7 * 7 * 64, 1024])
    b_fc1 = bias_variable([1024])

    h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

测试结果

dropout保活比例 训练步数 准确率
0.5 2000 0.974
0.5 10000 0.9905
0.7 2000 0.9775
0.7 5000 0.9883
0.7 10000 0.99
0.8 2000 0.9797

上述是原始网络的测试结果。
我试着将卷积层2的卷积核个数分别调整为16、8、4、1,准确率分别是
0.9909、0.989、0.9868、0.973

可以说,把参数从320万+降到5万,效果没有数量级差异。对弈MNIST数据集来说,这个网络过于冗余了。可以不断优化调整各个层的超参,应该可以组合出一个最好、最快的结果。

各个超参的影响

参考资料的《用于MNIST的简单卷积神经网络的设计》总结了各个超参的影响,主要内容如下:

  • 卷积核越多,收敛越快,最终准确率越高
  • 使用不同的激活函数,卷积层使用relu6和relu都不错,softmax最差。全连接层的激活函数elu是最好的。可以看到,全连接激活函数,没有负数部分效果不会太好,elu比较均衡。
  • 不同学习率下降速度不同,达到的准确率也不同。太大太小都不好。学习率大时下降较快。
  • 权重初始化的方差有影响,但是不是很大。

上述代码是在作者的源码上的结论,和本文的代码稍有不同,但是可以借鉴这些结论。

代码


"""A deep MNIST classifier using convolutional layers.

See extensive documentation at
https://www.tensorflow.org/get_started/mnist/pros
"""
# Disable linter warnings to maintain consistency with tutorial.
# pylint: disable=invalid-name
# pylint: disable=g-bad-import-order

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import sys
import tempfile

from tensorflow.examples.tutorials.mnist import input_data

import tensorflow as tf

FLAGS = None


def deepnn(x):
  """deepnn builds the graph for a deep net for classifying digits.

  Args:
    x: an input tensor with the dimensions (N_examples, 784), where 784 is the
    number of pixels in a standard MNIST image.

  Returns:
    A tuple (y, keep_prob). y is a tensor of shape (N_examples, 10), with values
    equal to the logits of classifying the digit into one of 10 classes (the
    digits 0-9). keep_prob is a scalar placeholder for the probability of
    dropout.
  """
  # Reshape to use within a convolutional neural net.
  # Last dimension is for "features" - there is only one here, since images are
  # grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc.
  with tf.name_scope('reshape'):
    x_image = tf.reshape(x, [-1, 28, 28, 1])

  # First convolutional layer - maps one grayscale image to 32 feature maps.
  with tf.name_scope('conv1'):
    W_conv1 = weight_variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)

  # Pooling layer - downsamples by 2X.
  with tf.name_scope('pool1'):
    h_pool1 = max_pool_2x2(h_conv1)

  # Second convolutional layer -- maps 32 feature maps to 64.
  with tf.name_scope('conv2'):
    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)

  # Second pooling layer.
  with tf.name_scope('pool2'):
    h_pool2 = max_pool_2x2(h_conv2)

  # Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image
  # is down to 7x7x64 feature maps -- maps this to 1024 features.
  with tf.name_scope('fc1'):
    W_fc1 = weight_variable([7 * 7 * 64, 1024])
    b_fc1 = bias_variable([1024])

    h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

  # Dropout - controls the complexity of the model, prevents co-adaptation of
  # features.
  with tf.name_scope('dropout'):
    keep_prob = tf.placeholder(tf.float32)
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

  # Map the 1024 features to 10 classes, one for each digit
  with tf.name_scope('fc2'):
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])

    y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
  return y_conv, keep_prob


def conv2d(x, W):
  """conv2d returns a 2d convolution layer with full stride."""
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')


def max_pool_2x2(x):
  """max_pool_2x2 downsamples a feature map by 2X."""
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='SAME')


def weight_variable(shape):
  """weight_variable generates a weight variable of a given shape."""
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)


def bias_variable(shape):
  """bias_variable generates a bias variable of a given shape."""
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)


def main(_):
  # Import data
  mnist = input_data.read_data_sets(FLAGS.data_dir)

  # Create the model
  x = tf.placeholder(tf.float32, [None, 784])

  # Define loss and optimizer
  y_ = tf.placeholder(tf.int64, [None])

  # Build the graph for the deep net
  y_conv, keep_prob = deepnn(x)

  with tf.name_scope('loss'):
    cross_entropy = tf.losses.sparse_softmax_cross_entropy(
        labels=y_, logits=y_conv)
  cross_entropy = tf.reduce_mean(cross_entropy)

  with tf.name_scope('adam_optimizer'):
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

  with tf.name_scope('accuracy'):
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), y_)
    correct_prediction = tf.cast(correct_prediction, tf.float32)
  accuracy = tf.reduce_mean(correct_prediction)

  graph_location = tempfile.mkdtemp()
  print('Saving graph to: %s' % graph_location)
  train_writer = tf.summary.FileWriter(graph_location)
  train_writer.add_graph(tf.get_default_graph())

  with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for i in range(2000):
      batch = mnist.train.next_batch(50)
      if i % 100 == 0:
        train_accuracy = accuracy.eval(feed_dict={
            x: batch[0], y_: batch[1], keep_prob: 1.0})
        print('step %d, training accuracy %g' % (i, train_accuracy))
      train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.7})

    print('test accuracy %g' % accuracy.eval(feed_dict={
        x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

if __name__ == '__main__':
  parser = argparse.ArgumentParser()
  parser.add_argument('--data_dir', type=str,
                      default='./data',
                      help='Directory for storing input data')
  FLAGS, unparsed = parser.parse_known_args()
  tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

参考资料

官方教程:深入MNIST(卷积神经网络)

用于MNIST的简单卷积神经网络的设计

猜你喜欢

转载自blog.csdn.net/yuanlulu/article/details/83509682