Redis源码剖析之服务器

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_28851503/article/details/82026260

以下涉及到的源码均为redis5.0-rc3版本的代码【点击查看官方源码

服务器结构

在redis的头文件server.h中定义了服务器的数据结构,略见如下:(详细的可在文末的源码部分见得)

struct redisServer {

    //服务器的一些信息
    ·
    ·
    ·
}

服务器初始化

在redis服务器启动中,在服务器的初始化过程中主要由三个函数操作:

  1. initServerConfig:先初始相关配置
  2. initServer:接着初始化服务器
  3. serverCron:再让服务器在后台做一些定时任务操作
  4. 其他的一些初始化操作

而这三个过程中,基本的初始化配置就不需要再说明了,可见后面源码;接下来介绍了以下serverCron函数以及其中的databasesCron函数。

serverCron函数

serverCron函数中的操作是再服务器背后定期运行的,做了一些重要的操作,比如:过期键的删除、设备软件的监控、静态变量的更新、rehash、BGSAVE/AOF的重写等等操作。具体详见函数源码:

/* This is our timer interrupt, called server.hz times per second.
 * Here is where we do a number of things that need to be done asynchronously.
 * For instance:
 *
 * - Active expired keys collection (it is also performed in a lazy way on
 *   lookup).
 * - Software watchdog.
 * - Update some statistic.
 * - Incremental rehashing of the DBs hash tables.
 * - Triggering BGSAVE / AOF rewrite, and handling of terminated children.
 * - Clients timeout of different kinds.
 * - Replication reconnection.
 * - Many more...
 *
 * Everything directly called here will be called server.hz times per second,
 * so in order to throttle execution of things we want to do less frequently
 * a macro is used: run_with_period(milliseconds) { .... }
 */

int serverCron(struct aeEventLoop *eventLoop, long long id, void *clientData) {
    int j;
    UNUSED(eventLoop);
    UNUSED(id);
    UNUSED(clientData);

    /* Software watchdog: deliver the SIGALRM that will reach the signal
     * handler if we don't return here fast enough. */
    if (server.watchdog_period) watchdogScheduleSignal(server.watchdog_period);

    //更新时间缓存
    updateCachedTime();

    //每100毫秒运行一次
    run_with_period(100) {
        trackInstantaneousMetric(STATS_METRIC_COMMAND,server.stat_numcommands);
        trackInstantaneousMetric(STATS_METRIC_NET_INPUT,
                server.stat_net_input_bytes);
        trackInstantaneousMetric(STATS_METRIC_NET_OUTPUT,
                server.stat_net_output_bytes);
    }

    /* We have just LRU_BITS bits per object for LRU information.
     * So we use an (eventually wrapping) LRU clock.
     *
     * Note that even if the counter wraps it's not a big problem,
     * everything will still work but some object will appear younger
     * to Redis. However for this to happen a given object should never be
     * touched for all the time needed to the counter to wrap, which is
     * not likely.
     *
     * Note that you can change the resolution altering the
     * LRU_CLOCK_RESOLUTION define. */
    unsigned long lruclock = getLRUClock();
    atomicSet(server.lruclock,lruclock);

    记录自服务器启动以来的已使用的内存
    if (zmalloc_used_memory() > server.stat_peak_memory)
        server.stat_peak_memory = zmalloc_used_memory();

    //每100毫秒运行一次
    run_with_period(100) {
        /* Sample the RSS and other metrics here since this is a relatively slow call.
         * We must sample the zmalloc_used at the same time we take the rss, otherwise
         * the frag ratio calculate may be off (ratio of two samples at different times) */
        server.cron_malloc_stats.process_rss = zmalloc_get_rss();
        server.cron_malloc_stats.zmalloc_used = zmalloc_used_memory();
        /* Sampling the allcator info can be slow too.
         * The fragmentation ratio it'll show is potentically more accurate
         * it excludes other RSS pages such as: shared libraries, LUA and other non-zmalloc
         * allocations, and allocator reserved pages that can be pursed (all not actual frag) */
        zmalloc_get_allocator_info(&server.cron_malloc_stats.allocator_allocated,
                                   &server.cron_malloc_stats.allocator_active,
                                   &server.cron_malloc_stats.allocator_resident);
        /* in case the allocator isn't providing these stats, fake them so that
         * fragmention info still shows some (inaccurate metrics) */
        if (!server.cron_malloc_stats.allocator_resident) {
            /* LUA memory isn't part of zmalloc_used, but it is part of the process RSS,
             * so we must desuct it in order to be able to calculate correct
             * "allocator fragmentation" ratio */
            size_t lua_memory = lua_gc(server.lua,LUA_GCCOUNT,0)*1024LL;
            server.cron_malloc_stats.allocator_resident = server.cron_malloc_stats.process_rss - lua_memory;
        }
        if (!server.cron_malloc_stats.allocator_active)
            server.cron_malloc_stats.allocator_active = server.cron_malloc_stats.allocator_resident;
        if (!server.cron_malloc_stats.allocator_allocated)
            server.cron_malloc_stats.allocator_allocated = server.cron_malloc_stats.zmalloc_used;
    }

    //接收一个SIGTERM信好去安全的关闭服务(避免出现不安全操作)
    if (server.shutdown_asap) {
        if (prepareForShutdown(SHUTDOWN_NOFLAGS) == C_OK) exit(0);
        serverLog(LL_WARNING,"SIGTERM received but errors trying to shut down the server, check the logs for more information");
        server.shutdown_asap = 0;
    }

    //展示非空数据库的信息
    run_with_period(5000) {
        for (j = 0; j < server.dbnum; j++) {
            long long size, used, vkeys;

            size = dictSlots(server.db[j].dict);
            used = dictSize(server.db[j].dict);
            vkeys = dictSize(server.db[j].expires);
            if (used || vkeys) {
                serverLog(LL_VERBOSE,"DB %d: %lld keys (%lld volatile) in %lld slots HT.",j,used,vkeys,size);
                /* dictPrintStats(server.dict); */
            }
        }
    }

    //展示连接的客户端的信息
    if (!server.sentinel_mode) {
        run_with_period(5000) {
            serverLog(LL_VERBOSE,
                "%lu clients connected (%lu slaves), %zu bytes in use",
                listLength(server.clients)-listLength(server.slaves),
                listLength(server.slaves),
                zmalloc_used_memory());
        }
    }

    //客户端的一些异步操作
    clientsCron();

    //后台对database的一些运行操作
    databasesCron();

    //aop重写操作
    if (server.rdb_child_pid == -1 && server.aof_child_pid == -1 &&
        server.aof_rewrite_scheduled)
    {
        rewriteAppendOnlyFileBackground();
    }

    //检查是否有在后台运行rdbsava和aop重写操作
    if (server.rdb_child_pid != -1 || server.aof_child_pid != -1 ||
        ldbPendingChildren())
    {
        int statloc;
        pid_t pid;

        if ((pid = wait3(&statloc,WNOHANG,NULL)) != 0) {
            int exitcode = WEXITSTATUS(statloc);
            int bysignal = 0;

            if (WIFSIGNALED(statloc)) bysignal = WTERMSIG(statloc);

            if (pid == -1) {
                serverLog(LL_WARNING,"wait3() returned an error: %s. "
                    "rdb_child_pid = %d, aof_child_pid = %d",
                    strerror(errno),
                    (int) server.rdb_child_pid,
                    (int) server.aof_child_pid);
            } else if (pid == server.rdb_child_pid) {
                backgroundSaveDoneHandler(exitcode,bysignal);
                if (!bysignal && exitcode == 0) receiveChildInfo();
            } else if (pid == server.aof_child_pid) {
                backgroundRewriteDoneHandler(exitcode,bysignal);
                if (!bysignal && exitcode == 0) receiveChildInfo();
            } else {
                if (!ldbRemoveChild(pid)) {
                    serverLog(LL_WARNING,
                        "Warning, detected child with unmatched pid: %ld",
                        (long)pid);
                }
            }
            updateDictResizePolicy();
            closeChildInfoPipe();
        }
    } else {
        /* If there is not a background saving/rewrite in progress check if
         * we have to save/rewrite now. */
         for (j = 0; j < server.saveparamslen; j++) {
            struct saveparam *sp = server.saveparams+j;

            /* Save if we reached the given amount of changes,
             * the given amount of seconds, and if the latest bgsave was
             * successful or if, in case of an error, at least
             * CONFIG_BGSAVE_RETRY_DELAY seconds already elapsed. */
            if (server.dirty >= sp->changes &&
                server.unixtime-server.lastsave > sp->seconds &&
                (server.unixtime-server.lastbgsave_try >
                 CONFIG_BGSAVE_RETRY_DELAY ||
                 server.lastbgsave_status == C_OK))
            {
                serverLog(LL_NOTICE,"%d changes in %d seconds. Saving...",
                    sp->changes, (int)sp->seconds);
                rdbSaveInfo rsi, *rsiptr;
                rsiptr = rdbPopulateSaveInfo(&rsi);
                rdbSaveBackground(server.rdb_filename,rsiptr);
                break;
            }
         }

         //在条件满足的情况下触发aof重写操作
         if (server.aof_state == AOF_ON &&
             server.rdb_child_pid == -1 &&
             server.aof_child_pid == -1 &&
             server.aof_rewrite_perc &&
             server.aof_current_size > server.aof_rewrite_min_size)
         {
            long long base = server.aof_rewrite_base_size ?
                            server.aof_rewrite_base_size : 1;
            long long growth = (server.aof_current_size*100/base) - 100;
            if (growth >= server.aof_rewrite_perc) {
                serverLog(LL_NOTICE,"Starting automatic rewriting of AOF on %lld%% growth",growth);
                rewriteAppendOnlyFileBackground();
            }
         }
    }

     //如果之前的执行周期还未完成,则延迟清楚buffer
    if (server.aof_flush_postponed_start) flushAppendOnlyFile(0);

    /* AOF write errors: in this case we have a buffer to flush as well and
     * clear the AOF error in case of success to make the DB writable again,
     * however to try every second is enough in case of 'hz' is set to
     * an higher frequency. */
    run_with_period(1000) {
        if (server.aof_last_write_status == C_ERR)
            flushAppendOnlyFile(0);
    }

    //释放客户端
    freeClientsInAsyncFreeQueue();

    //清楚已暂停使用的客户端
    clientsArePaused(); 

    /* Replication cron function -- used to reconnect to master,
     * detect transfer failures, start background RDB transfers and so forth. */
    run_with_period(1000) replicationCron();

    run_with_period(100) {
        //如果是集群模式,则每100毫秒执行一次集群模式下相关的事件
        if (server.cluster_enabled) clusterCron();
    }

    run_with_period(100) {
        //如果sentinel模式存在,则没100毫秒执行一次哨兵模式下的一些事件
        if (server.sentinel_mode) sentinelTimer();
    }

    run_with_period(1000) {
        //每秒清理一次废弃的sockets链接
        migrateCloseTimedoutSockets();
    }

    /* Start a scheduled BGSAVE if the corresponding flag is set. This is
     * useful when we are forced to postpone a BGSAVE because an AOF
     * rewrite is in progress.
     *
     * Note: this code must be after the replicationCron() call above so
     * make sure when refactoring this file to keep this order. This is useful
     * because we want to give priority to RDB savings for replication. */
    if (server.rdb_child_pid == -1 && server.aof_child_pid == -1 &&
        server.rdb_bgsave_scheduled &&
        (server.unixtime-server.lastbgsave_try > CONFIG_BGSAVE_RETRY_DELAY ||
         server.lastbgsave_status == C_OK))
    {
        rdbSaveInfo rsi, *rsiptr;
        rsiptr = rdbPopulateSaveInfo(&rsi);
        if (rdbSaveBackground(server.rdb_filename,rsiptr) == C_OK)
            server.rdb_bgsave_scheduled = 0;
    }

    server.cronloops++;
    return 1000/server.hz;
}

databasesCron

databasesCron是serverCron中的一个子函数,其执行时间为每100ms执行一次。主要的功能是去执行一些数据库的增量操作,比如键的过期,空间的resizing和hash表的rehashing操作等。

/* This function handles 'background' operations we are required to do
 * incrementally in Redis databases, such as active key expiring, resizing,
 * rehashing. */
void databasesCron(void) {
    /* Expire keys by random sampling. Not required for slaves
     * as master will synthesize DELs for us. */
    if (server.active_expire_enabled && server.masterhost == NULL) {
        activeExpireCycle(ACTIVE_EXPIRE_CYCLE_SLOW);
    } else if (server.masterhost != NULL) {
        expireSlaveKeys();
    }

    /* Defrag keys gradually. */
    if (server.active_defrag_enabled)
        activeDefragCycle();

    /* Perform hash tables rehashing if needed, but only if there are no
     * other processes saving the DB on disk. Otherwise rehashing is bad
     * as will cause a lot of copy-on-write of memory pages. */
    if (server.rdb_child_pid == -1 && server.aof_child_pid == -1) {
        /* We use global counters so if we stop the computation at a given
         * DB we'll be able to start from the successive in the next
         * cron loop iteration. */
        static unsigned int resize_db = 0;
        static unsigned int rehash_db = 0;
        int dbs_per_call = CRON_DBS_PER_CALL;  //server.h中宏定义 #define CRON_DBS_PER_CALL 16
        int j;

        /* Don't test more DBs than we have. */
        if (dbs_per_call > server.dbnum) dbs_per_call = server.dbnum;

        /* Resize */
        for (j = 0; j < dbs_per_call; j++) {
            tryResizeHashTables(resize_db % server.dbnum);
            resize_db++;
        }

        /* Rehash */
        if (server.activerehashing) {
            for (j = 0; j < dbs_per_call; j++) {
                int work_done = incrementallyRehash(rehash_db);
                if (work_done) {
                    /* If the function did some work, stop here, we'll do
                     * more at the next cron loop. */
                    break;
                } else {
                    /* If this db didn't need rehash, we'll try the next one. */
                    rehash_db++;
                    rehash_db %= server.dbnum;
                }
            }
        }
    }
}

/* Our hash table implementation performs rehashing incrementally while
 * we write/read from the hash table. Still if the server is idle, the hash
 * table will use two tables for a long time. So we try to use 1 millisecond
 * of CPU time at every call of this function to perform some rehahsing.
 *
 * The function returns 1 if some rehashing was performed, otherwise 0
 * is returned. */
int incrementallyRehash(int dbid) {
    /* Keys dictionary */
    if (dictIsRehashing(server.db[dbid].dict)) {
        dictRehashMilliseconds(server.db[dbid].dict,1);
        return 1; /* already used our millisecond for this loop... */
    }
    /* Expires */
    if (dictIsRehashing(server.db[dbid].expires)) {
        dictRehashMilliseconds(server.db[dbid].expires,1);
        return 1; /* already used our millisecond for this loop... */
    }
    return 0;
}

redisServer/initServerConfig/initServer源码

这里贴身三个函数的源码,更详细的服务器启动初始化详见源码中的server.c文件。

redisServer

struct redisServer {
    /* General */
    pid_t pid;                  /* Main process pid. */
    char *configfile;           /* Absolute config file path, or NULL */
    char *executable;           /* Absolute executable file path. */
    char **exec_argv;           /* Executable argv vector (copy). */
    int hz;                     /* serverCron() calls frequency in hertz */
    redisDb *db;
    dict *commands;             /* Command table */
    dict *orig_commands;        /* Command table before command renaming. */
    aeEventLoop *el;
    unsigned int lruclock;      /* Clock for LRU eviction */
    int shutdown_asap;          /* SHUTDOWN needed ASAP */
    int activerehashing;        /* Incremental rehash in serverCron() */
    int active_defrag_running;  /* Active defragmentation running (holds current scan aggressiveness) */
    char *requirepass;          /* Pass for AUTH command, or NULL */
    char *pidfile;              /* PID file path */
    int arch_bits;              /* 32 or 64 depending on sizeof(long) */
    int cronloops;              /* Number of times the cron function run */
    char runid[CONFIG_RUN_ID_SIZE+1];  /* ID always different at every exec. */
    int sentinel_mode;          /* True if this instance is a Sentinel. */
    size_t initial_memory_usage; /* Bytes used after initialization. */
    int always_show_logo;       /* Show logo even for non-stdout logging. */
    /* Modules */
    dict *moduleapi;            /* Exported APIs dictionary for modules. */
    list *loadmodule_queue;     /* List of modules to load at startup. */
    int module_blocked_pipe[2]; /* Pipe used to awake the event loop if a
                                   client blocked on a module command needs
                                   to be processed. */
    /* Networking */
    int port;                   /* TCP listening port */
    int tcp_backlog;            /* TCP listen() backlog */
    char *bindaddr[CONFIG_BINDADDR_MAX]; /* Addresses we should bind to */
    int bindaddr_count;         /* Number of addresses in server.bindaddr[] */
    char *unixsocket;           /* UNIX socket path */
    mode_t unixsocketperm;      /* UNIX socket permission */
    int ipfd[CONFIG_BINDADDR_MAX]; /* TCP socket file descriptors */
    int ipfd_count;             /* Used slots in ipfd[] */
    int sofd;                   /* Unix socket file descriptor */
    int cfd[CONFIG_BINDADDR_MAX];/* Cluster bus listening socket */
    int cfd_count;              /* Used slots in cfd[] */
    list *clients;              /* List of active clients */
    list *clients_to_close;     /* Clients to close asynchronously */
    list *clients_pending_write; /* There is to write or install handler. */
    list *slaves, *monitors;    /* List of slaves and MONITORs */
    client *current_client; /* Current client, only used on crash report */
    int clients_paused;         /* True if clients are currently paused */
    mstime_t clients_pause_end_time; /* Time when we undo clients_paused */
    char neterr[ANET_ERR_LEN];   /* Error buffer for anet.c */
    dict *migrate_cached_sockets;/* MIGRATE cached sockets */
    uint64_t next_client_id;    /* Next client unique ID. Incremental. */
    int protected_mode;         /* Don't accept external connections. */
    /* RDB / AOF loading information */
    int loading;                /* We are loading data from disk if true */
    off_t loading_total_bytes;
    off_t loading_loaded_bytes;
    time_t loading_start_time;
    off_t loading_process_events_interval_bytes;
    /* Fast pointers to often looked up command */
    struct redisCommand *delCommand, *multiCommand, *lpushCommand,
                        *lpopCommand, *rpopCommand, *zpopminCommand,
                        *zpopmaxCommand, *sremCommand, *execCommand,
                        *expireCommand, *pexpireCommand, *xclaimCommand;
    /* Fields used only for stats */
    time_t stat_starttime;          /* Server start time */
    long long stat_numcommands;     /* Number of processed commands */
    long long stat_numconnections;  /* Number of connections received */
    long long stat_expiredkeys;     /* Number of expired keys */
    double stat_expired_stale_perc; /* Percentage of keys probably expired */
    long long stat_expired_time_cap_reached_count; /* Early expire cylce stops.*/
    long long stat_evictedkeys;     /* Number of evicted keys (maxmemory) */
    long long stat_keyspace_hits;   /* Number of successful lookups of keys */
    long long stat_keyspace_misses; /* Number of failed lookups of keys */
    long long stat_active_defrag_hits;      /* number of allocations moved */
    long long stat_active_defrag_misses;    /* number of allocations scanned but not moved */
    long long stat_active_defrag_key_hits;  /* number of keys with moved allocations */
    long long stat_active_defrag_key_misses;/* number of keys scanned and not moved */
    long long stat_active_defrag_scanned;   /* number of dictEntries scanned */
    size_t stat_peak_memory;        /* Max used memory record */
    long long stat_fork_time;       /* Time needed to perform latest fork() */
    double stat_fork_rate;          /* Fork rate in GB/sec. */
    long long stat_rejected_conn;   /* Clients rejected because of maxclients */
    long long stat_sync_full;       /* Number of full resyncs with slaves. */
    long long stat_sync_partial_ok; /* Number of accepted PSYNC requests. */
    long long stat_sync_partial_err;/* Number of unaccepted PSYNC requests. */
    list *slowlog;                  /* SLOWLOG list of commands */
    long long slowlog_entry_id;     /* SLOWLOG current entry ID */
    long long slowlog_log_slower_than; /* SLOWLOG time limit (to get logged) */
    unsigned long slowlog_max_len;     /* SLOWLOG max number of items logged */
    malloc_stats cron_malloc_stats; /* sampled in serverCron(). */
    long long stat_net_input_bytes; /* Bytes read from network. */
    long long stat_net_output_bytes; /* Bytes written to network. */
    size_t stat_rdb_cow_bytes;      /* Copy on write bytes during RDB saving. */
    size_t stat_aof_cow_bytes;      /* Copy on write bytes during AOF rewrite. */
    /* The following two are used to track instantaneous metrics, like
     * number of operations per second, network traffic. */
    struct {
        long long last_sample_time; /* Timestamp of last sample in ms */
        long long last_sample_count;/* Count in last sample */
        long long samples[STATS_METRIC_SAMPLES];
        int idx;
    } inst_metric[STATS_METRIC_COUNT];
    /* Configuration */
    int verbosity;                  /* Loglevel in redis.conf */
    int maxidletime;                /* Client timeout in seconds */
    int tcpkeepalive;               /* Set SO_KEEPALIVE if non-zero. */
    int active_expire_enabled;      /* Can be disabled for testing purposes. */
    int active_defrag_enabled;
    size_t active_defrag_ignore_bytes; /* minimum amount of fragmentation waste to start active defrag */
    int active_defrag_threshold_lower; /* minimum percentage of fragmentation to start active defrag */
    int active_defrag_threshold_upper; /* maximum percentage of fragmentation at which we use maximum effort */
    int active_defrag_cycle_min;       /* minimal effort for defrag in CPU percentage */
    int active_defrag_cycle_max;       /* maximal effort for defrag in CPU percentage */
    unsigned long active_defrag_max_scan_fields; /* maximum number of fields of set/hash/zset/list to process from within the main dict scan */
    size_t client_max_querybuf_len; /* Limit for client query buffer length */
    int dbnum;                      /* Total number of configured DBs */
    int supervised;                 /* 1 if supervised, 0 otherwise. */
    int supervised_mode;            /* See SUPERVISED_* */
    int daemonize;                  /* True if running as a daemon */
    clientBufferLimitsConfig client_obuf_limits[CLIENT_TYPE_OBUF_COUNT];
    /* AOF persistence */
    int aof_state;                  /* AOF_(ON|OFF|WAIT_REWRITE) */
    int aof_fsync;                  /* Kind of fsync() policy */
    char *aof_filename;             /* Name of the AOF file */
    int aof_no_fsync_on_rewrite;    /* Don't fsync if a rewrite is in prog. */
    int aof_rewrite_perc;           /* Rewrite AOF if % growth is > M and... */
    off_t aof_rewrite_min_size;     /* the AOF file is at least N bytes. */
    off_t aof_rewrite_base_size;    /* AOF size on latest startup or rewrite. */
    off_t aof_current_size;         /* AOF current size. */
    int aof_rewrite_scheduled;      /* Rewrite once BGSAVE terminates. */
    pid_t aof_child_pid;            /* PID if rewriting process */
    list *aof_rewrite_buf_blocks;   /* Hold changes during an AOF rewrite. */
    sds aof_buf;      /* AOF buffer, written before entering the event loop */
    int aof_fd;       /* File descriptor of currently selected AOF file */
    int aof_selected_db; /* Currently selected DB in AOF */
    time_t aof_flush_postponed_start; /* UNIX time of postponed AOF flush */
    time_t aof_last_fsync;            /* UNIX time of last fsync() */
    time_t aof_rewrite_time_last;   /* Time used by last AOF rewrite run. */
    time_t aof_rewrite_time_start;  /* Current AOF rewrite start time. */
    int aof_lastbgrewrite_status;   /* C_OK or C_ERR */
    unsigned long aof_delayed_fsync;  /* delayed AOF fsync() counter */
    int aof_rewrite_incremental_fsync;/* fsync incrementally while rewriting? */
    int aof_last_write_status;      /* C_OK or C_ERR */
    int aof_last_write_errno;       /* Valid if aof_last_write_status is ERR */
    int aof_load_truncated;         /* Don't stop on unexpected AOF EOF. */
    int aof_use_rdb_preamble;       /* Use RDB preamble on AOF rewrites. */
    /* AOF pipes used to communicate between parent and child during rewrite. */
    int aof_pipe_write_data_to_child;
    int aof_pipe_read_data_from_parent;
    int aof_pipe_write_ack_to_parent;
    int aof_pipe_read_ack_from_child;
    int aof_pipe_write_ack_to_child;
    int aof_pipe_read_ack_from_parent;
    int aof_stop_sending_diff;     /* If true stop sending accumulated diffs
                                      to child process. */
    sds aof_child_diff;             /* AOF diff accumulator child side. */
    /* RDB persistence */
    long long dirty;                /* Changes to DB from the last save */
    long long dirty_before_bgsave;  /* Used to restore dirty on failed BGSAVE */
    pid_t rdb_child_pid;            /* PID of RDB saving child */
    struct saveparam *saveparams;   /* Save points array for RDB */
    int saveparamslen;              /* Number of saving points */
    char *rdb_filename;             /* Name of RDB file */
    int rdb_compression;            /* Use compression in RDB? */
    int rdb_checksum;               /* Use RDB checksum? */
    time_t lastsave;                /* Unix time of last successful save */
    time_t lastbgsave_try;          /* Unix time of last attempted bgsave */
    time_t rdb_save_time_last;      /* Time used by last RDB save run. */
    time_t rdb_save_time_start;     /* Current RDB save start time. */
    int rdb_bgsave_scheduled;       /* BGSAVE when possible if true. */
    int rdb_child_type;             /* Type of save by active child. */
    int lastbgsave_status;          /* C_OK or C_ERR */
    int stop_writes_on_bgsave_err;  /* Don't allow writes if can't BGSAVE */
    int rdb_pipe_write_result_to_parent; /* RDB pipes used to return the state */
    int rdb_pipe_read_result_from_child; /* of each slave in diskless SYNC. */
    /* Pipe and data structures for child -> parent info sharing. */
    int child_info_pipe[2];         /* Pipe used to write the child_info_data. */
    struct {
        int process_type;           /* AOF or RDB child? */
        size_t cow_size;            /* Copy on write size. */
        unsigned long long magic;   /* Magic value to make sure data is valid. */
    } child_info_data;
    /* Propagation of commands in AOF / replication */
    redisOpArray also_propagate;    /* Additional command to propagate. */
    /* Logging */
    char *logfile;                  /* Path of log file */
    int syslog_enabled;             /* Is syslog enabled? */
    char *syslog_ident;             /* Syslog ident */
    int syslog_facility;            /* Syslog facility */
    /* Replication (master) */
    char replid[CONFIG_RUN_ID_SIZE+1];  /* My current replication ID. */
    char replid2[CONFIG_RUN_ID_SIZE+1]; /* replid inherited from master*/
    long long master_repl_offset;   /* My current replication offset */
    long long second_replid_offset; /* Accept offsets up to this for replid2. */
    int slaveseldb;                 /* Last SELECTed DB in replication output */
    int repl_ping_slave_period;     /* Master pings the slave every N seconds */
    char *repl_backlog;             /* Replication backlog for partial syncs */
    long long repl_backlog_size;    /* Backlog circular buffer size */
    long long repl_backlog_histlen; /* Backlog actual data length */
    long long repl_backlog_idx;     /* Backlog circular buffer current offset,
                                       that is the next byte will'll write to.*/
    long long repl_backlog_off;     /* Replication "master offset" of first
                                       byte in the replication backlog buffer.*/
    time_t repl_backlog_time_limit; /* Time without slaves after the backlog
                                       gets released. */
    time_t repl_no_slaves_since;    /* We have no slaves since that time.
                                       Only valid if server.slaves len is 0. */
    int repl_min_slaves_to_write;   /* Min number of slaves to write. */
    int repl_min_slaves_max_lag;    /* Max lag of <count> slaves to write. */
    int repl_good_slaves_count;     /* Number of slaves with lag <= max_lag. */
    int repl_diskless_sync;         /* Send RDB to slaves sockets directly. */
    int repl_diskless_sync_delay;   /* Delay to start a diskless repl BGSAVE. */
    /* Replication (slave) */
    char *masterauth;               /* AUTH with this password with master */
    char *masterhost;               /* Hostname of master */
    int masterport;                 /* Port of master */
    int repl_timeout;               /* Timeout after N seconds of master idle */
    client *master;     /* Client that is master for this slave */
    client *cached_master; /* Cached master to be reused for PSYNC. */
    int repl_syncio_timeout; /* Timeout for synchronous I/O calls */
    int repl_state;          /* Replication status if the instance is a slave */
    off_t repl_transfer_size; /* Size of RDB to read from master during sync. */
    off_t repl_transfer_read; /* Amount of RDB read from master during sync. */
    off_t repl_transfer_last_fsync_off; /* Offset when we fsync-ed last time. */
    int repl_transfer_s;     /* Slave -> Master SYNC socket */
    int repl_transfer_fd;    /* Slave -> Master SYNC temp file descriptor */
    char *repl_transfer_tmpfile; /* Slave-> master SYNC temp file name */
    time_t repl_transfer_lastio; /* Unix time of the latest read, for timeout */
    int repl_serve_stale_data; /* Serve stale data when link is down? */
    int repl_slave_ro;          /* Slave is read only? */
    time_t repl_down_since; /* Unix time at which link with master went down */
    int repl_disable_tcp_nodelay;   /* Disable TCP_NODELAY after SYNC? */
    int slave_priority;             /* Reported in INFO and used by Sentinel. */
    int slave_announce_port;        /* Give the master this listening port. */
    char *slave_announce_ip;        /* Give the master this ip address. */
    /* The following two fields is where we store master PSYNC replid/offset
     * while the PSYNC is in progress. At the end we'll copy the fields into
     * the server->master client structure. */
    char master_replid[CONFIG_RUN_ID_SIZE+1];  /* Master PSYNC runid. */
    long long master_initial_offset;           /* Master PSYNC offset. */
    int repl_slave_lazy_flush;          /* Lazy FLUSHALL before loading DB? */
    /* Replication script cache. */
    dict *repl_scriptcache_dict;        /* SHA1 all slaves are aware of. */
    list *repl_scriptcache_fifo;        /* First in, first out LRU eviction. */
    unsigned int repl_scriptcache_size; /* Max number of elements. */
    /* Synchronous replication. */
    list *clients_waiting_acks;         /* Clients waiting in WAIT command. */
    int get_ack_from_slaves;            /* If true we send REPLCONF GETACK. */
    /* Limits */
    unsigned int maxclients;            /* Max number of simultaneous clients */
    unsigned long long maxmemory;   /* Max number of memory bytes to use */
    int maxmemory_policy;           /* Policy for key eviction */
    int maxmemory_samples;          /* Pricision of random sampling */
    int lfu_log_factor;             /* LFU logarithmic counter factor. */
    int lfu_decay_time;             /* LFU counter decay factor. */
    long long proto_max_bulk_len;   /* Protocol bulk length maximum size. */
    /* Blocked clients */
    unsigned int blocked_clients;   /* # of clients executing a blocking cmd.*/
    unsigned int blocked_clients_by_type[BLOCKED_NUM];
    list *unblocked_clients; /* list of clients to unblock before next loop */
    list *ready_keys;        /* List of readyList structures for BLPOP & co */
    /* Sort parameters - qsort_r() is only available under BSD so we
     * have to take this state global, in order to pass it to sortCompare() */
    int sort_desc;
    int sort_alpha;
    int sort_bypattern;
    int sort_store;
    /* Zip structure config, see redis.conf for more information  */
    size_t hash_max_ziplist_entries;
    size_t hash_max_ziplist_value;
    size_t set_max_intset_entries;
    size_t zset_max_ziplist_entries;
    size_t zset_max_ziplist_value;
    size_t hll_sparse_max_bytes;
    size_t stream_node_max_bytes;
    int64_t stream_node_max_entries;
    /* List parameters */
    int list_max_ziplist_size;
    int list_compress_depth;
    /* time cache */
    time_t unixtime;    /* Unix time sampled every cron cycle. */
    long long mstime;   /* Like 'unixtime' but with milliseconds resolution. */
    /* Pubsub */
    dict *pubsub_channels;  /* Map channels to list of subscribed clients */
    list *pubsub_patterns;  /* A list of pubsub_patterns */
    int notify_keyspace_events; /* Events to propagate via Pub/Sub. This is an
                                   xor of NOTIFY_... flags. */
    /* Cluster */
    int cluster_enabled;      /* Is cluster enabled? */
    mstime_t cluster_node_timeout; /* Cluster node timeout. */
    char *cluster_configfile; /* Cluster auto-generated config file name. */
    struct clusterState *cluster;  /* State of the cluster */
    int cluster_migration_barrier; /* Cluster replicas migration barrier. */
    int cluster_slave_validity_factor; /* Slave max data age for failover. */
    int cluster_require_full_coverage; /* If true, put the cluster down if
                                          there is at least an uncovered slot.*/
    int cluster_slave_no_failover;  /* Prevent slave from starting a failover
                                       if the master is in failure state. */
    char *cluster_announce_ip;  /* IP address to announce on cluster bus. */
    int cluster_announce_port;     /* base port to announce on cluster bus. */
    int cluster_announce_bus_port; /* bus port to announce on cluster bus. */
    /* Scripting */
    lua_State *lua; /* The Lua interpreter. We use just one for all clients */
    client *lua_client;   /* The "fake client" to query Redis from Lua */
    client *lua_caller;   /* The client running EVAL right now, or NULL */
    dict *lua_scripts;         /* A dictionary of SHA1 -> Lua scripts */
    mstime_t lua_time_limit;  /* Script timeout in milliseconds */
    mstime_t lua_time_start;  /* Start time of script, milliseconds time */
    int lua_write_dirty;  /* True if a write command was called during the
                             execution of the current script. */
    int lua_random_dirty; /* True if a random command was called during the
                             execution of the current script. */
    int lua_replicate_commands; /* True if we are doing single commands repl. */
    int lua_multi_emitted;/* True if we already proagated MULTI. */
    int lua_repl;         /* Script replication flags for redis.set_repl(). */
    int lua_timedout;     /* True if we reached the time limit for script
                             execution. */
    int lua_kill;         /* Kill the script if true. */
    int lua_always_replicate_commands; /* Default replication type. */
    /* Lazy free */
    int lazyfree_lazy_eviction;
    int lazyfree_lazy_expire;
    int lazyfree_lazy_server_del;
    /* Latency monitor */
    long long latency_monitor_threshold;
    dict *latency_events;
    /* Assert & bug reporting */
    const char *assert_failed;
    const char *assert_file;
    int assert_line;
    int bug_report_start; /* True if bug report header was already logged. */
    int watchdog_period;  /* Software watchdog period in ms. 0 = off */
    /* System hardware info */
    size_t system_memory_size;  /* Total memory in system as reported by OS */

    /* Mutexes used to protect atomic variables when atomic builtins are
     * not available. */
    pthread_mutex_t lruclock_mutex;
    pthread_mutex_t next_client_id_mutex;
    pthread_mutex_t unixtime_mutex;
};

initServerConfig

void initServerConfig(void) {
    int j;

    pthread_mutex_init(&server.next_client_id_mutex,NULL);
    pthread_mutex_init(&server.lruclock_mutex,NULL);
    pthread_mutex_init(&server.unixtime_mutex,NULL);

    getRandomHexChars(server.runid,CONFIG_RUN_ID_SIZE);
    server.runid[CONFIG_RUN_ID_SIZE] = '\0';
    changeReplicationId();
    clearReplicationId2();
    server.configfile = NULL;
    server.executable = NULL;
    server.hz = CONFIG_DEFAULT_HZ;
    server.arch_bits = (sizeof(long) == 8) ? 64 : 32;
    server.port = CONFIG_DEFAULT_SERVER_PORT;
    server.tcp_backlog = CONFIG_DEFAULT_TCP_BACKLOG;
    server.bindaddr_count = 0;
    server.unixsocket = NULL;
    server.unixsocketperm = CONFIG_DEFAULT_UNIX_SOCKET_PERM;
    server.ipfd_count = 0;
    server.sofd = -1;
    server.protected_mode = CONFIG_DEFAULT_PROTECTED_MODE;
    server.dbnum = CONFIG_DEFAULT_DBNUM;
    server.verbosity = CONFIG_DEFAULT_VERBOSITY;
    server.maxidletime = CONFIG_DEFAULT_CLIENT_TIMEOUT;
    server.tcpkeepalive = CONFIG_DEFAULT_TCP_KEEPALIVE;
    server.active_expire_enabled = 1;
    server.active_defrag_enabled = CONFIG_DEFAULT_ACTIVE_DEFRAG;
    server.active_defrag_ignore_bytes = CONFIG_DEFAULT_DEFRAG_IGNORE_BYTES;
    server.active_defrag_threshold_lower = CONFIG_DEFAULT_DEFRAG_THRESHOLD_LOWER;
    server.active_defrag_threshold_upper = CONFIG_DEFAULT_DEFRAG_THRESHOLD_UPPER;
    server.active_defrag_cycle_min = CONFIG_DEFAULT_DEFRAG_CYCLE_MIN;
    server.active_defrag_cycle_max = CONFIG_DEFAULT_DEFRAG_CYCLE_MAX;
    server.active_defrag_max_scan_fields = CONFIG_DEFAULT_DEFRAG_MAX_SCAN_FIELDS;
    server.proto_max_bulk_len = CONFIG_DEFAULT_PROTO_MAX_BULK_LEN;
    server.client_max_querybuf_len = PROTO_MAX_QUERYBUF_LEN;
    server.saveparams = NULL;
    server.loading = 0;
    server.logfile = zstrdup(CONFIG_DEFAULT_LOGFILE);
    server.syslog_enabled = CONFIG_DEFAULT_SYSLOG_ENABLED;
    server.syslog_ident = zstrdup(CONFIG_DEFAULT_SYSLOG_IDENT);
    server.syslog_facility = LOG_LOCAL0;
    server.daemonize = CONFIG_DEFAULT_DAEMONIZE;
    server.supervised = 0;
    server.supervised_mode = SUPERVISED_NONE;
    server.aof_state = AOF_OFF;
    server.aof_fsync = CONFIG_DEFAULT_AOF_FSYNC;
    server.aof_no_fsync_on_rewrite = CONFIG_DEFAULT_AOF_NO_FSYNC_ON_REWRITE;
    server.aof_rewrite_perc = AOF_REWRITE_PERC;
    server.aof_rewrite_min_size = AOF_REWRITE_MIN_SIZE;
    server.aof_rewrite_base_size = 0;
    server.aof_rewrite_scheduled = 0;
    server.aof_last_fsync = time(NULL);
    server.aof_rewrite_time_last = -1;
    server.aof_rewrite_time_start = -1;
    server.aof_lastbgrewrite_status = C_OK;
    server.aof_delayed_fsync = 0;
    server.aof_fd = -1;
    server.aof_selected_db = -1; /* Make sure the first time will not match */
    server.aof_flush_postponed_start = 0;
    server.aof_rewrite_incremental_fsync = CONFIG_DEFAULT_AOF_REWRITE_INCREMENTAL_FSYNC;
    server.aof_load_truncated = CONFIG_DEFAULT_AOF_LOAD_TRUNCATED;
    server.aof_use_rdb_preamble = CONFIG_DEFAULT_AOF_USE_RDB_PREAMBLE;
    server.pidfile = NULL;
    server.rdb_filename = zstrdup(CONFIG_DEFAULT_RDB_FILENAME);
    server.aof_filename = zstrdup(CONFIG_DEFAULT_AOF_FILENAME);
    server.requirepass = NULL;
    server.rdb_compression = CONFIG_DEFAULT_RDB_COMPRESSION;
    server.rdb_checksum = CONFIG_DEFAULT_RDB_CHECKSUM;
    server.stop_writes_on_bgsave_err = CONFIG_DEFAULT_STOP_WRITES_ON_BGSAVE_ERROR;
    server.activerehashing = CONFIG_DEFAULT_ACTIVE_REHASHING;
    server.active_defrag_running = 0;
    server.notify_keyspace_events = 0;
    server.maxclients = CONFIG_DEFAULT_MAX_CLIENTS;
    server.blocked_clients = 0;
    memset(server.blocked_clients_by_type,0,
           sizeof(server.blocked_clients_by_type));
    server.maxmemory = CONFIG_DEFAULT_MAXMEMORY;
    server.maxmemory_policy = CONFIG_DEFAULT_MAXMEMORY_POLICY;
    server.maxmemory_samples = CONFIG_DEFAULT_MAXMEMORY_SAMPLES;
    server.lfu_log_factor = CONFIG_DEFAULT_LFU_LOG_FACTOR;
    server.lfu_decay_time = CONFIG_DEFAULT_LFU_DECAY_TIME;
    server.hash_max_ziplist_entries = OBJ_HASH_MAX_ZIPLIST_ENTRIES;
    server.hash_max_ziplist_value = OBJ_HASH_MAX_ZIPLIST_VALUE;
    server.list_max_ziplist_size = OBJ_LIST_MAX_ZIPLIST_SIZE;
    server.list_compress_depth = OBJ_LIST_COMPRESS_DEPTH;
    server.set_max_intset_entries = OBJ_SET_MAX_INTSET_ENTRIES;
    server.zset_max_ziplist_entries = OBJ_ZSET_MAX_ZIPLIST_ENTRIES;
    server.zset_max_ziplist_value = OBJ_ZSET_MAX_ZIPLIST_VALUE;
    server.hll_sparse_max_bytes = CONFIG_DEFAULT_HLL_SPARSE_MAX_BYTES;
    server.stream_node_max_bytes = OBJ_STREAM_NODE_MAX_BYTES;
    server.stream_node_max_entries = OBJ_STREAM_NODE_MAX_ENTRIES;
    server.shutdown_asap = 0;
    server.cluster_enabled = 0;
    server.cluster_node_timeout = CLUSTER_DEFAULT_NODE_TIMEOUT;
    server.cluster_migration_barrier = CLUSTER_DEFAULT_MIGRATION_BARRIER;
    server.cluster_slave_validity_factor = CLUSTER_DEFAULT_SLAVE_VALIDITY;
    server.cluster_require_full_coverage = CLUSTER_DEFAULT_REQUIRE_FULL_COVERAGE;
    server.cluster_slave_no_failover = CLUSTER_DEFAULT_SLAVE_NO_FAILOVER;
    server.cluster_configfile = zstrdup(CONFIG_DEFAULT_CLUSTER_CONFIG_FILE);
    server.cluster_announce_ip = CONFIG_DEFAULT_CLUSTER_ANNOUNCE_IP;
    server.cluster_announce_port = CONFIG_DEFAULT_CLUSTER_ANNOUNCE_PORT;
    server.cluster_announce_bus_port = CONFIG_DEFAULT_CLUSTER_ANNOUNCE_BUS_PORT;
    server.migrate_cached_sockets = dictCreate(&migrateCacheDictType,NULL);
    server.next_client_id = 1; /* Client IDs, start from 1 .*/
    server.loading_process_events_interval_bytes = (1024*1024*2);
    server.lazyfree_lazy_eviction = CONFIG_DEFAULT_LAZYFREE_LAZY_EVICTION;
    server.lazyfree_lazy_expire = CONFIG_DEFAULT_LAZYFREE_LAZY_EXPIRE;
    server.lazyfree_lazy_server_del = CONFIG_DEFAULT_LAZYFREE_LAZY_SERVER_DEL;
    server.always_show_logo = CONFIG_DEFAULT_ALWAYS_SHOW_LOGO;
    server.lua_time_limit = LUA_SCRIPT_TIME_LIMIT;

    unsigned int lruclock = getLRUClock();
    atomicSet(server.lruclock,lruclock);
    resetServerSaveParams();

    appendServerSaveParams(60*60,1);  /* save after 1 hour and 1 change */
    appendServerSaveParams(300,100);  /* save after 5 minutes and 100 changes */
    appendServerSaveParams(60,10000); /* save after 1 minute and 10000 changes */

    /* Replication related */
    server.masterauth = NULL;
    server.masterhost = NULL;
    server.masterport = 6379;
    server.master = NULL;
    server.cached_master = NULL;
    server.master_initial_offset = -1;
    server.repl_state = REPL_STATE_NONE;
    server.repl_syncio_timeout = CONFIG_REPL_SYNCIO_TIMEOUT;
    server.repl_serve_stale_data = CONFIG_DEFAULT_SLAVE_SERVE_STALE_DATA;
    server.repl_slave_ro = CONFIG_DEFAULT_SLAVE_READ_ONLY;
    server.repl_slave_lazy_flush = CONFIG_DEFAULT_SLAVE_LAZY_FLUSH;
    server.repl_down_since = 0; /* Never connected, repl is down since EVER. */
    server.repl_disable_tcp_nodelay = CONFIG_DEFAULT_REPL_DISABLE_TCP_NODELAY;
    server.repl_diskless_sync = CONFIG_DEFAULT_REPL_DISKLESS_SYNC;
    server.repl_diskless_sync_delay = CONFIG_DEFAULT_REPL_DISKLESS_SYNC_DELAY;
    server.repl_ping_slave_period = CONFIG_DEFAULT_REPL_PING_SLAVE_PERIOD;
    server.repl_timeout = CONFIG_DEFAULT_REPL_TIMEOUT;
    server.repl_min_slaves_to_write = CONFIG_DEFAULT_MIN_SLAVES_TO_WRITE;
    server.repl_min_slaves_max_lag = CONFIG_DEFAULT_MIN_SLAVES_MAX_LAG;
    server.slave_priority = CONFIG_DEFAULT_SLAVE_PRIORITY;
    server.slave_announce_ip = CONFIG_DEFAULT_SLAVE_ANNOUNCE_IP;
    server.slave_announce_port = CONFIG_DEFAULT_SLAVE_ANNOUNCE_PORT;
    server.master_repl_offset = 0;

    /* Replication partial resync backlog */
    server.repl_backlog = NULL;
    server.repl_backlog_size = CONFIG_DEFAULT_REPL_BACKLOG_SIZE;
    server.repl_backlog_histlen = 0;
    server.repl_backlog_idx = 0;
    server.repl_backlog_off = 0;
    server.repl_backlog_time_limit = CONFIG_DEFAULT_REPL_BACKLOG_TIME_LIMIT;
    server.repl_no_slaves_since = time(NULL);

    /* Client output buffer limits */
    for (j = 0; j < CLIENT_TYPE_OBUF_COUNT; j++)
        server.client_obuf_limits[j] = clientBufferLimitsDefaults[j];

    /* Double constants initialization */
    R_Zero = 0.0;
    R_PosInf = 1.0/R_Zero;
    R_NegInf = -1.0/R_Zero;
    R_Nan = R_Zero/R_Zero;

    /* Command table -- we initiialize it here as it is part of the
     * initial configuration, since command names may be changed via
     * redis.conf using the rename-command directive. */
    server.commands = dictCreate(&commandTableDictType,NULL);
    server.orig_commands = dictCreate(&commandTableDictType,NULL);
    populateCommandTable();
    server.delCommand = lookupCommandByCString("del");
    server.multiCommand = lookupCommandByCString("multi");
    server.lpushCommand = lookupCommandByCString("lpush");
    server.lpopCommand = lookupCommandByCString("lpop");
    server.rpopCommand = lookupCommandByCString("rpop");
    server.zpopminCommand = lookupCommandByCString("zpopmin");
    server.zpopmaxCommand = lookupCommandByCString("zpopmax");
    server.sremCommand = lookupCommandByCString("srem");
    server.execCommand = lookupCommandByCString("exec");
    server.expireCommand = lookupCommandByCString("expire");
    server.pexpireCommand = lookupCommandByCString("pexpire");
    server.xclaimCommand = lookupCommandByCString("xclaim");

    /* Slow log */
    server.slowlog_log_slower_than = CONFIG_DEFAULT_SLOWLOG_LOG_SLOWER_THAN;
    server.slowlog_max_len = CONFIG_DEFAULT_SLOWLOG_MAX_LEN;

    /* Latency monitor */
    server.latency_monitor_threshold = CONFIG_DEFAULT_LATENCY_MONITOR_THRESHOLD;

    /* Debugging */
    server.assert_failed = "<no assertion failed>";
    server.assert_file = "<no file>";
    server.assert_line = 0;
    server.bug_report_start = 0;
    server.watchdog_period = 0;
}

initServer

void initServer(void) {
    int j;

    signal(SIGHUP, SIG_IGN);
    signal(SIGPIPE, SIG_IGN);
    setupSignalHandlers();

    if (server.syslog_enabled) {
        openlog(server.syslog_ident, LOG_PID | LOG_NDELAY | LOG_NOWAIT,
            server.syslog_facility);
    }

    server.pid = getpid();
    server.current_client = NULL;
    server.clients = listCreate();
    server.clients_to_close = listCreate();
    server.slaves = listCreate();
    server.monitors = listCreate();
    server.clients_pending_write = listCreate();
    server.slaveseldb = -1; /* Force to emit the first SELECT command. */
    server.unblocked_clients = listCreate();
    server.ready_keys = listCreate();
    server.clients_waiting_acks = listCreate();
    server.get_ack_from_slaves = 0;
    server.clients_paused = 0;
    server.system_memory_size = zmalloc_get_memory_size();

    //创建共享对象
    createSharedObjects();
    adjustOpenFilesLimit();
    server.el = aeCreateEventLoop(server.maxclients+CONFIG_FDSET_INCR);
    if (server.el == NULL) {
        serverLog(LL_WARNING,
            "Failed creating the event loop. Error message: '%s'",
            strerror(errno));
        exit(1);
    }
    server.db = zmalloc(sizeof(redisDb)*server.dbnum);

    /* Open the TCP listening socket for the user commands. */
    if (server.port != 0 &&
        listenToPort(server.port,server.ipfd,&server.ipfd_count) == C_ERR)
        exit(1);

    /* Open the listening Unix domain socket. */
    if (server.unixsocket != NULL) {
        unlink(server.unixsocket); /* don't care if this fails */
        server.sofd = anetUnixServer(server.neterr,server.unixsocket,
            server.unixsocketperm, server.tcp_backlog);
        if (server.sofd == ANET_ERR) {
            serverLog(LL_WARNING, "Opening Unix socket: %s", server.neterr);
            exit(1);
        }
        anetNonBlock(NULL,server.sofd);
    }

    /* Abort if there are no listening sockets at all. */
    if (server.ipfd_count == 0 && server.sofd < 0) {
        serverLog(LL_WARNING, "Configured to not listen anywhere, exiting.");
        exit(1);
    }

    //创建database
    for (j = 0; j < server.dbnum; j++) {
        server.db[j].dict = dictCreate(&dbDictType,NULL);
        server.db[j].expires = dictCreate(&keyptrDictType,NULL);
        server.db[j].blocking_keys = dictCreate(&keylistDictType,NULL);
        server.db[j].ready_keys = dictCreate(&objectKeyPointerValueDictType,NULL);
        server.db[j].watched_keys = dictCreate(&keylistDictType,NULL);
        server.db[j].id = j;
        server.db[j].avg_ttl = 0;
        server.db[j].defrag_later = listCreate();
    }
    evictionPoolAlloc(); /* Initialize the LRU keys pool. */
    server.pubsub_channels = dictCreate(&keylistDictType,NULL);
    server.pubsub_patterns = listCreate();
    listSetFreeMethod(server.pubsub_patterns,freePubsubPattern);
    listSetMatchMethod(server.pubsub_patterns,listMatchPubsubPattern);
    server.cronloops = 0;
    server.rdb_child_pid = -1;
    server.aof_child_pid = -1;
    server.rdb_child_type = RDB_CHILD_TYPE_NONE;
    server.rdb_bgsave_scheduled = 0;
    server.child_info_pipe[0] = -1;
    server.child_info_pipe[1] = -1;
    server.child_info_data.magic = 0;
    aofRewriteBufferReset();
    server.aof_buf = sdsempty();
    server.lastsave = time(NULL); /* At startup we consider the DB saved. */
    server.lastbgsave_try = 0;    /* At startup we never tried to BGSAVE. */
    server.rdb_save_time_last = -1;
    server.rdb_save_time_start = -1;
    server.dirty = 0;
    resetServerStats();
    /* A few stats we don't want to reset: server startup time, and peak mem. */
    server.stat_starttime = time(NULL);
    server.stat_peak_memory = 0;
    server.stat_rdb_cow_bytes = 0;
    server.stat_aof_cow_bytes = 0;
    server.cron_malloc_stats.zmalloc_used = 0;
    server.cron_malloc_stats.process_rss = 0;
    server.cron_malloc_stats.allocator_allocated = 0;
    server.cron_malloc_stats.allocator_active = 0;
    server.cron_malloc_stats.allocator_resident = 0;
    server.lastbgsave_status = C_OK;
    server.aof_last_write_status = C_OK;
    server.aof_last_write_errno = 0;
    server.repl_good_slaves_count = 0;
    updateCachedTime();

    /* Create the timer callback, this is our way to process many background
     * operations incrementally, like clients timeout, eviction of unaccessed
     * expired keys and so forth. */
    if (aeCreateTimeEvent(server.el, 1, serverCron, NULL, NULL) == AE_ERR) {
        serverPanic("Can't create event loop timers.");
        exit(1);
    }

    /* Create an event handler for accepting new connections in TCP and Unix
     * domain sockets. */
    for (j = 0; j < server.ipfd_count; j++) {
        if (aeCreateFileEvent(server.el, server.ipfd[j], AE_READABLE,
            acceptTcpHandler,NULL) == AE_ERR)
            {
                serverPanic(
                    "Unrecoverable error creating server.ipfd file event.");
            }
    }
    if (server.sofd > 0 && aeCreateFileEvent(server.el,server.sofd,AE_READABLE,
        acceptUnixHandler,NULL) == AE_ERR) serverPanic("Unrecoverable error creating server.sofd file event.");


    /* Register a readable event for the pipe used to awake the event loop
     * when a blocked client in a module needs attention. */
    if (aeCreateFileEvent(server.el, server.module_blocked_pipe[0], AE_READABLE,
        moduleBlockedClientPipeReadable,NULL) == AE_ERR) {
            serverPanic(
                "Error registering the readable event for the module "
                "blocked clients subsystem.");
    }

    /* Open the AOF file if needed. */
    if (server.aof_state == AOF_ON) {
        //开启aof文件读取
        server.aof_fd = open(server.aof_filename,
                               O_WRONLY|O_APPEND|O_CREAT,0644);
        if (server.aof_fd == -1) {
            serverLog(LL_WARNING, "Can't open the append-only file: %s",
                strerror(errno));
            exit(1);
        }
    }

    /* 32 bit instances are limited to 4GB of address space, so if there is
     * no explicit limit in the user provided configuration we set a limit
     * at 3 GB using maxmemory with 'noeviction' policy'. This avoids
     * useless crashes of the Redis instance for out of memory. */
    if (server.arch_bits == 32 && server.maxmemory == 0) {
        serverLog(LL_WARNING,"Warning: 32 bit instance detected but no memory limit set. Setting 3 GB maxmemory limit with 'noeviction' policy now.");
        server.maxmemory = 3072LL*(1024*1024); /* 3 GB */
        server.maxmemory_policy = MAXMEMORY_NO_EVICTION;
    }

    if (server.cluster_enabled) clusterInit();
    replicationScriptCacheInit();
    scriptingInit(1);
    slowlogInit();
    latencyMonitorInit();
    bioInit();
    server.initial_memory_usage = zmalloc_used_memory();
}

猜你喜欢

转载自blog.csdn.net/qq_28851503/article/details/82026260