NS-3之Tracing System

https://www.nsnam.org/docs/tutorial/html/tracing.html

注:1。因为我是边学边用,可能会有不正确的地方。

        2。C++是大学的时候学过的,但工作中很少用到,也是在NS3的学习过程中,遇到不懂的再去查阅C++Primer这本书籍的。可能会有遗漏或者错误的理解。

        3。持续性完善补充这篇文章,因为Tracing在NS3中是较为重要的一个部分。

tracing 用于追踪数据传递的信息

/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation;
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include <fstream>
#include "ns3/core-module.h"
#include "ns3/network-module.h"
#include "ns3/internet-module.h"
#include "ns3/point-to-point-module.h"
#include "ns3/applications-module.h"

using namespace ns3;

NS_LOG_COMPONENT_DEFINE ("TCPCONGESTIONWINDOW");

// ===========================================================================
//
//         node 0                 node 1
//   +----------------+    +----------------+
//   |    ns-3 TCP    |    |    ns-3 TCP    |
//   +----------------+    +----------------+
//   |    10.1.1.1    |    |    10.1.1.2    |
//   +----------------+    +----------------+
//   | point-to-point |    | point-to-point |
//   +----------------+    +----------------+
//           |                     |
//           +---------------------+
//                5 Mbps, 2 ms
//
//
// We want to look at changes in the ns-3 TCP congestion window.  We need
// to crank up a flow and hook the CongestionWindow attribute on the socket
// of the sender.  Normally one would use an on-off application to generate a
// flow, but this has a couple of problems.  First, the socket of the on-off
// application is not created until Application Start time, so we wouldn't be
// able to hook the socket (now) at configuration time.  Second, even if we
// could arrange a call after start time, the socket is not public so we
// couldn't get at it.
//
// So, we can cook up a simple version of the on-off application that does what
// we want.  On the plus side we don't need all of the complexity of the on-off
// application.  On the minus side, we don't have a helper, so we have to get
// a little more involved in the details, but this is trivial.
//
// So first, we create a socket and do the trace connect on it; then we pass
// this socket into the constructor of our simple application which we then
// install in the source node.
// ===========================================================================
//
class MyApp : public Application
{
public:

  MyApp ();
  virtual ~MyApp();

  void Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, uint32_t nPackets, DataRate dataRate);

private:
  virtual void StartApplication (void);
  virtual void StopApplication (void);

  void ScheduleTx (void);
  void SendPacket (void);

  Ptr<Socket>     m_socket;
  Address         m_peer;
  uint32_t        m_packetSize;
  uint32_t        m_nPackets;
  DataRate        m_dataRate;
  EventId         m_sendEvent;
  bool            m_running;
  uint32_t        m_packetsSent;
};

MyApp::MyApp ()
  : m_socket (0),
    m_peer (),
    m_packetSize (0),
    m_nPackets (0),
    m_dataRate (0),
    m_sendEvent (),
    m_running (false),
    m_packetsSent (0)
{
}

MyApp::~MyApp()
{
  m_socket = 0;
}

void
MyApp::Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, uint32_t nPackets, DataRate dataRate)
{
  m_socket = socket;
  m_peer = address;
  m_packetSize = packetSize;
  m_nPackets = nPackets;
  m_dataRate = dataRate;
}

void
MyApp::StartApplication (void)
{
  m_running = true;
  m_packetsSent = 0;
  m_socket->Bind ();
  m_socket->Connect (m_peer);
  SendPacket ();
}

void
MyApp::StopApplication (void)
{
  m_running = false;

  if (m_sendEvent.IsRunning ())
    {
      Simulator::Cancel (m_sendEvent);
    }

  if (m_socket)
    {
      m_socket->Close ();
    }
}

// to start the chain of events that describes the Application behavior
void
MyApp::SendPacket (void)
{
  Ptr<Packet> packet = Create<Packet> (m_packetSize);

  m_socket->Send (packet);

  if (++m_packetsSent < m_nPackets)
    {
      ScheduleTx ();
    }
}

// keep scheduling the chain of events
void
MyApp::ScheduleTx (void)
{
  if (m_running)
    {
	  // to schedule another transmit event (a SendPacket) until the Application decides it has sent enough.
      Time tNext (Seconds (m_packetSize * 8 / static_cast<double> (m_dataRate.GetBitRate ())));
      m_sendEvent = Simulator::Schedule (tNext, &MyApp::SendPacket, this);
    }
}

static void
CwndChange (uint32_t oldCwnd, uint32_t newCwnd)
{
	// logs the current simulation time and the new value of the congestion window every time it is changed.
	// can load the resulting output into a graphic program and immediately see a graph of the
	// congestion window behavior over time.
  NS_LOG_UNCOND ("CwndChange at " << Simulator::Now ().GetSeconds () << "\t" << newCwnd);
}

static void
RxDrop (Ptr<const Packet> p)
{
	// this trace source of the point-to-point NetDevice
	// this trace source fires when a packet is dropped by the physical layer of a NetDevice.
  NS_LOG_UNCOND ("RxDrop at " << Simulator::Now ().GetSeconds ());
}

int
main (int argc, char *argv[])
{
  CommandLine cmd;
  cmd.Parse (argc, argv);

  // create two nodes
  NodeContainer nodes;
  nodes.Create (2);

  // point-to-point channel
  PointToPointHelper pointToPoint;
  pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));
  pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms"));

  NetDeviceContainer devices;
  devices = pointToPoint.Install (nodes);

  // we really want to introduce link errors which will drop packets,cause
  // duplicate ACKs and trigger the more interesting behaviors of the congestion window.
  // errorModel can be attached to Channels,
  // using the RateErrorModel which allow us to introduce errors into a Channel at a given rate
  // instantiates a RateErrorModel Object
  Ptr<RateErrorModel> em = CreateObject<RateErrorModel> ();
  // set the resulting instantiated RateRrrorModel
  em->SetAttribute ("ErrorRate", DoubleValue (0.00001));
  // the error model used by the point-to-point NetDevice
  devices.Get (1)->SetAttribute ("ReceiveErrorModel", PointerValue (em));

  // installs internet stacks on our two nodes
  InternetStackHelper stack;
  stack.Install (nodes);

  // creates interfaces and assigns IP addresses for the point-to-point devices
  Ipv4AddressHelper address;
  address.SetBase ("10.1.1.0", "255.255.255.252");
  Ipv4InterfaceContainer interfaces = address.Assign (devices);

  // since we use TCP, we need something on the destination Node to receive TCP connections
  // and data.
  // The PacketSink Application is commonly used in ns-3 for that purpose.
  uint16_t sinkPort = 8080;
  Address sinkAddress (InetSocketAddress (interfaces.GetAddress (1), sinkPort));
  // instantiates a PacketSinkHelper and tells it to create sockets using the class ns3::TcpSocketFactory
  // Ipv4Address and the sinkPort is the Application should Bind to
  PacketSinkHelper packetSinkHelper ("ns3::TcpSocketFactory", InetSocketAddress (Ipv4Address::GetAny (), sinkPort));
  ApplicationContainer sinkApps = packetSinkHelper.Install (nodes.Get (1));
  sinkApps.Start (Seconds (0.));
  sinkApps.Stop (Seconds (20.));

  // create the socket and connect the trace source.
  // calls the static member function Socket::CreateSocket and provides a Node and an
  // explicit TypeId for the object factory used to create the socket.
  Ptr<Socket> ns3TcpSocket = Socket::CreateSocket (nodes.Get (0), TcpSocketFactory::GetTypeId ());
  // use TraceConnectWithoutContext to connect the CongestionWindow trace source to trace sink.
  ns3TcpSocket->TraceConnectWithoutContext ("CongestionWindow", MakeCallback (&CwndChange));

  Ptr<MyApp> app = CreateObject<MyApp> ();
  app->Setup (ns3TcpSocket, sinkAddress, 1040, 1000, DataRate ("1Mbps"));
  nodes.Get (0)->AddApplication (app);
  app->SetStartTime (Seconds (1.));
  app->SetStopTime (Seconds (20.));

  // need to actually do the connect from the receiver point-to-point NetDevice drop event
  // to our RxDrop callback now.
  devices.Get (1)->TraceConnectWithoutContext ("PhyRxDrop", MakeCallback (&RxDrop));

  Simulator::Stop (Seconds (20));
  Simulator::Run ();
  Simulator::Destroy ();

  return 0;
}

带注释的源码,便于理解tracing的原理和机制


/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation;
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include <fstream>
#include "ns3/core-module.h"
#include "ns3/network-module.h"
#include "ns3/internet-module.h"
#include "ns3/point-to-point-module.h"
#include "ns3/applications-module.h"

using namespace ns3;

NS_LOG_COMPONENT_DEFINE ("SixthScriptExample");

// ===========================================================================
//
//         node 0                 node 1
//   +----------------+    +----------------+
//   |    ns-3 TCP    |    |    ns-3 TCP    |
//   +----------------+    +----------------+
//   |    10.1.1.1    |    |    10.1.1.2    |
//   +----------------+    +----------------+
//   | point-to-point |    | point-to-point |
//   +----------------+    +----------------+
//           |                     |
//           +---------------------+
//                5 Mbps, 2 ms
//
//
// We want to look at changes in the ns-3 TCP congestion window.  We need
// to crank up a flow and hook the CongestionWindow attribute on the socket
// of the sender.  Normally one would use an on-off application to generate a
// flow, but this has a couple of problems.  First, the socket of the on-off
// application is not created until Application Start time, so we wouldn't be
// able to hook the socket (now) at configuration time.  Second, even if we
// could arrange a call after start time, the socket is not public so we
// couldn't get at it.
//
// So, we can cook up a simple version of the on-off application that does what
// we want.  On the plus side we don't need all of the complexity of the on-off
// application.  On the minus side, we don't have a helper, so we have to get
// a little more involved in the details, but this is trivial.
//
// So first, we create a socket and do the trace connect on it; then we pass
// this socket into the constructor of our simple application which we then
// install in the source node.
// ===========================================================================
//
class MyApp : public Application
{
public:
  MyApp ();
  virtual ~MyApp ();

  /**
   * Register this type.
   * \return The TypeId.
   */
  static TypeId GetTypeId (void);
  void Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, uint32_t nPackets, DataRate dataRate);

private:
  virtual void StartApplication (void);
  virtual void StopApplication (void);

  void ScheduleTx (void);
  void SendPacket (void);

  Ptr<Socket>     m_socket;
  Address         m_peer;
  uint32_t        m_packetSize;
  uint32_t        m_nPackets;
  DataRate        m_dataRate;
  EventId         m_sendEvent;
  bool            m_running;
  uint32_t        m_packetsSent;
};

MyApp::MyApp ()
  : m_socket (0),
    m_peer (),
    m_packetSize (0),
    m_nPackets (0),
    m_dataRate (0),
    m_sendEvent (),
    m_running (false),
    m_packetsSent (0)
{
}

MyApp::~MyApp ()
{
  m_socket = 0;
}

/* static */
TypeId MyApp::GetTypeId (void)
{
  static TypeId tid = TypeId ("MyApp")
    .SetParent<Application> ()
    .SetGroupName ("Tutorial")
    .AddConstructor<MyApp> ()
    ;
  return tid;
}

void
MyApp::Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, uint32_t nPackets, DataRate dataRate)
{
  m_socket = socket;
  m_peer = address;
  m_packetSize = packetSize;
  m_nPackets = nPackets;
  m_dataRate = dataRate;
}

void
MyApp::StartApplication (void)
{
  m_running = true;
  m_packetsSent = 0;
  m_socket->Bind ();
  m_socket->Connect (m_peer);
  SendPacket ();
}

void
MyApp::StopApplication (void)
{
  m_running = false;

  if (m_sendEvent.IsRunning ())
    {
      Simulator::Cancel (m_sendEvent);
    }

  if (m_socket)
    {
      m_socket->Close ();
    }
}

void
MyApp::SendPacket (void)
{
  Ptr<Packet> packet = Create<Packet> (m_packetSize);
  m_socket->Send (packet);

  if (++m_packetsSent < m_nPackets)
    {
      ScheduleTx ();
    }
}

void
MyApp::ScheduleTx (void)
{
  if (m_running)
    {
      Time tNext (Seconds (m_packetSize * 8 / static_cast<double> (m_dataRate.GetBitRate ())));
      m_sendEvent = Simulator::Schedule (tNext, &MyApp::SendPacket, this);
    }
}

// stream : This is an object that holds(keeps safely alive) a c++ output stream.
// It turns out that this is a very simple object, but one that manages lifetime issues for the stram and solves
// a problem that even experienced c++ users run into.
static void
CwndChange (Ptr<OutputStreamWrapper> stream, uint32_t oldCwnd, uint32_t newCwnd)
{
  NS_LOG_UNCOND (Simulator::Now ().GetSeconds () << "\t" << newCwnd);
  *stream->GetStream () << Simulator::Now ().GetSeconds () << "\t" << oldCwnd << "\t" << newCwnd << std::endl;
}

static void
RxDrop (Ptr<PcapFileWrapper> file, Ptr<const Packet> p)
{
  NS_LOG_UNCOND ("RxDrop at " << Simulator::Now ().GetSeconds ());
  file->Write (Simulator::Now (), p);
}

int
main (int argc, char *argv[])
{
  CommandLine cmd;
  cmd.Parse (argc, argv);

  NodeContainer nodes;
  nodes.Create (2);

  PointToPointHelper pointToPoint;
  pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));
  pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms"));

  NetDeviceContainer devices;
  devices = pointToPoint.Install (nodes);

  Ptr<RateErrorModel> em = CreateObject<RateErrorModel> ();
  em->SetAttribute ("ErrorRate", DoubleValue (0.00001));
  devices.Get (1)->SetAttribute ("ReceiveErrorModel", PointerValue (em));

  InternetStackHelper stack;
  stack.Install (nodes);

  Ipv4AddressHelper address;
  address.SetBase ("10.1.1.0", "255.255.255.252");
  Ipv4InterfaceContainer interfaces = address.Assign (devices);

  uint16_t sinkPort = 8080;
  Address sinkAddress (InetSocketAddress (interfaces.GetAddress (1), sinkPort));
  PacketSinkHelper packetSinkHelper ("ns3::TcpSocketFactory", InetSocketAddress (Ipv4Address::GetAny (), sinkPort));
  ApplicationContainer sinkApps = packetSinkHelper.Install (nodes.Get (1));
  sinkApps.Start (Seconds (0.));
  sinkApps.Stop (Seconds (20.));

  Ptr<Socket> ns3TcpSocket = Socket::CreateSocket (nodes.Get (0), TcpSocketFactory::GetTypeId ());

  Ptr<MyApp> app = CreateObject<MyApp> ();
  app->Setup (ns3TcpSocket, sinkAddress, 1040, 1000, DataRate ("1Mbps"));
  nodes.Get (0)->AddApplication (app);
  app->SetStartTime (Seconds (1.));
  app->SetStopTime (Seconds (20.));

  AsciiTraceHelper asciiTraceHelper;
  Ptr<OutputStreamWrapper> stream = asciiTraceHelper.CreateFileStream ("sixth.cwnd");
  ns3TcpSocket->TraceConnectWithoutContext ("CongestionWindow", MakeBoundCallback (&CwndChange, stream));

  PcapHelper pcapHelper;
  Ptr<PcapFileWrapper> file = pcapHelper.CreateFile ("sixth.pcap", std::ios::out, PcapHelper::DLT_PPP);
  devices.Get (1)->TraceConnectWithoutContext ("PhyRxDrop", MakeBoundCallback (&RxDrop, file));

  Simulator::Stop (Seconds (20));
  Simulator::Run ();
  Simulator::Destroy ();

  return 0;
}


将tracing信息导出成可用文件,可用于进一步分析。

猜你喜欢

转载自blog.csdn.net/muziwenrong/article/details/78855241