卡塔兰(Catalan Number)数和斯特林公式(Stirling Approximation)分析

1.卡塔兰数
设第n个卡塔兰数为 h ( n ) h(n) h ( n ) h(n) 满足 h ( n ) = i = 1 n h ( n i ) h ( i 1 ) ( h ( 0 ) = 1 , h ( 1 ) = 1 ) h(n)=\sum^{n}_{i=1}{h(n-i)*h(i-1)}(h(0)=1,h(1)=1)
下面由上述定义的递推公式推导卡塔兰数的通项公式
对于数列 { h ( 1 ) , h ( 2 ) , h ( 3 ) , . . . h ( n ) . . . } \{h(1),h(2),h(3),...h(n)...\}
其生成函数为 G ( x ) = h ( 0 ) x + h ( 1 ) x 2 + . . . + h ( n ) x n + 1 + . . . G(x)=h(0)x+h(1)x^2+...+h(n)x^{n+1}+...
[ G ( x ) ] 2 = h ( 0 ) x 2 + ( h ( 0 ) h ( 1 ) + h ( 1 ) h ( 0 ) ) x 3 + ( h ( 0 ) h ( 2 ) + h ( 1 ) h ( 1 ) + h ( 2 ) h ( 0 ) ) x 4 . . . [G(x)]^2=h(0)x^2+(h(0)h(1)+h(1)h(0))x^3+(h(0)h(2)+h(1)h(1)+h(2)h(0))x^4...
由递推公式可知
[ G ( x ) ] 2 = G ( x ) x [G(x)]^2=G(x)-x
解得: x 1 = 1 1 4 x 2 , x 2 = 1 + 1 4 x 2 ( G ( 0 ) = 0 , x 2 ) x_1=\frac{1-\sqrt{1-4x}}{2},x_2=\frac{1+\sqrt{1-4x}}{2}(G(0)=0,故x_2舍去)
根据牛顿二项式 ( 1 4 x ) 1 2 = 1 2 1 n + 1 n = 1 C n 2 n x n (1-4x)^{\frac{1}{2}}=1-2\frac{1}{n+1}\sum^{\infty}_{n=1}C^{2n}_{n}x^n
化简得
G ( x ) = 1 n + 1 n = 1 C n 2 n x n h ( n ) = 1 n + 1 C n 2 n G(x)=\frac{1}{n+1}\sum^{\infty}_{n=1}C^{2n}_{n}x^n,所以h(n)=\frac{1}{n+1}C^{2n}_{n}
2.斯特林公式
n ! = 2 π n ( n e ) n n!=\sqrt{2\pi n}{(\frac{n}{e})}^n
(1)第一部分
由微积分知识可知
I k = 0 π 2 s i n k ( x ) d x = I_k=\int^{\frac{\pi}{2}}_0sin^k(x)dx=
π 2 ( k = 0 ) \frac{\pi}{2}(k=0)
1 ( k = 1 ) 1(k=1)
( k 1 ) ! ! k ! ! ( k ) \frac{(k-1)!!}{k!!}(k为奇数)
( k 1 ) ! ! k ! ! π 2 ( k ) \frac{(k-1)!!}{k!!}\frac{\pi}{2}(k为偶数)
s i n ( x ) < 1 sin(x)<1 可知: I 2 k + 1 < I 2 k < I 2 k 1 I_{2k+1}<I_{2k}<I_{2k-1} ,即
1 < π 2 ( ( 2 k ) ! ! ( 2 k 1 ) ! ! ) 2 1 2 k + 1 < 2 k + 1 2 k 1<\frac{\frac{\pi}{2}}{(\frac{(2k)!!}{(2k-1)!!})^2\frac{1}{2k+1}}<\frac{2k+1}{2k}
对两边取极限,由夹逼定理可知
lim k ( 2 2 k ( k ! ) 2 2 k ! ) 2 1 2 k + 1 \lim_{k→\infty}{{(\frac{2^{2k}({k!})^2}{2k!})}^2\frac{1}{2k+1}}
(2)第二部分
I n = 1 n ln n = n ln n n + 1 I_n=\int^{n}_1\ln n =n\ln n-n+1
该积分内接梯形面积为 s n = ln n ! 1 2 ln n s_n=\ln n!-\frac{1}{2}\ln n ,外接梯形面积 S n = ln n ! 1 2 ln n + 1 8 S_n=\ln n!-\frac{1}{2}\ln n+\frac{1}{8}
a n = I n s n < 1 8 a_n=I_n-s_n<\frac{1}{8} , a n a_n 单调递增(积分面积与内接梯形面积差值随n增大而增大)有上界,故 a n a_n 极限存在
a n = n ln n n + 1 ln n ! 1 2 ln n a_n=n\ln n-n+1-\ln n!-\frac{1}{2}\ln n 转化得 ln n ! = 1 a n + n ln n + 1 2 ln n n \ln n!=1-a_n+n\ln n+\frac{1}{2}\ln n-n
两边互取指数得 n ! = e 1 a n n ( n e ) n n!=e^{1-a_n}\sqrt{n}{(\frac{n}{e})}^n ,设 b n = e 1 a n , lim n b n = b b_n=e^{1-a_n},\lim_{n→\infty}b_n=b
代入第一部分得到的公式得:
lim k ( 2 2 k ( b k k ( k e ) k ) 2 b 2 k 2 k ( 2 k e ) 2 k ) 2 1 2 k + 1 = π 2 \lim_{k→\infty}(\frac{2^{2k}(b_k\sqrt{k}{(\frac{k}{e})}^k)^2}{b_{2k}\sqrt{2k}(\frac{2k}{e})^{2k}})^2\frac{1}{2k+1}=\frac{\pi}{2}
b lim k 2 1 2 k + 1 = π 2 , b = 2 π b\lim\frac{k}{2}\frac{1}{2k+1}=\frac{\pi}{2},所以b=\sqrt{2\pi}
: n ! = 2 π n ( n e ) n 得到斯特林公式:n!=\sqrt{2\pi n}{(\frac{n}{e})}^n
3.对于O(h(n))的化简
O ( h ( n ) ) = O ( 1 n + 1 C 2 n n ) = O ( 1 n + 1 ( 2 n ) ! ( n ! ) 2 ) = O ( 1 n + 1 4 n 4 π n ( n e ) 2 n 2 π n ( n e ) 2 n ) = O ( 4 n n 3 2 ) ( n ) O(h(n))=O(\frac{1}{n+1}C^n_{2n})=O(\frac{1}{n+1}\frac{(2n)!}{(n!)^2})=O(\frac{1}{n+1}\frac{4^n\sqrt{4\pi n}(\frac{n}{e})^{2n}}{2\pi n(\frac{n}{e})^{2n}})=O(\frac{4^n}{n^{\frac{3}{2}}})(此上界随n增大而渐进)

猜你喜欢

转载自blog.csdn.net/qq_42263831/article/details/82957308
今日推荐