STM32驱动MPU6050(二)——软件实现

版权声明:原创文章转载请注明出处。 https://blog.csdn.net/wwt18811707971/article/details/82859193

软件实现将从下面三个部分来介绍:IIC通信;MPU6050数据读取;数据融合。

1. IIC通信

为了移植的方便,这里的 IIC 采用软件模拟的方式实现。关于 IIC 的基础知识介绍,可参考IIC专题(一)——基础知识准备

下面以程序的实现过程,梳理一下 IIC 的通信时序。注:这里就采用正点原子的 mpu6050 的学习教程进行学习。

1.1 SDA 和SCL初始化


//初始化IIC
void MPU_IIC_Init(void)
{					     
  	GPIO_InitTypeDef  GPIO_InitStructure;
	
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC,ENABLE);//先使能外设IO PORTC时钟 
		
	  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12|GPIO_Pin_11;	 // 端口配置
	  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 		 //推挽输出
	  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;		 //IO口速度为50MHz
	  GPIO_Init(GPIOC, &GPIO_InitStructure);					 //根据设定参数初始化GPIO 
		
	  GPIO_SetBits(GPIOC,GPIO_Pin_12|GPIO_Pin_11);						 //PB10,PB11 输出高	
 
}

对于 SDA 输入输出的方向切换,这里直接通过配置寄存器实现:
//IO方向设置
#define MPU_SDA_IN()  {GPIOC->CRH&=0XFFFF0FFF;GPIOC->CRH|=8<<12;}
#define MPU_SDA_OUT() {GPIOC->CRH&=0XFFFF0FFF;GPIOC->CRH|=3<<12;}

也可通过配置库函数配置来实现:

void MPU_SDA_OUT(void)
{
	GPIO_InitTypeDef  GPIO_InitStructure;
	
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);
	
	GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_11;
	GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_Out_PP;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOC, &GPIO_InitStructure);
}
void MPU_SDA_IN(void)
{
	GPIO_InitTypeDef  GPIO_InitStructure;
	
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);
	
	GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_11;
	GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_IN_FLOATING;
	GPIO_Init(GPIOC, &GPIO_InitStructure);
}

1.2 IIC时序模拟实现

程序需要根据 IIC 的时序要求进行书写。注意:SDA和SCL需要接上拉电阻。

void MPU_IIC_Start(void)
{
	MPU_SDA_OUT();     //sda线输出
	MPU_IIC_SDA=1;	  	  
	MPU_IIC_SCL=1;
	MPU_IIC_Delay();
 	MPU_IIC_SDA=0;//START:when CLK is high,DATA change form high to low 
	MPU_IIC_Delay();
	MPU_IIC_SCL=0;//钳住I2C总线,准备发送或接收数据 
}	  
//产生IIC停止信号
void MPU_IIC_Stop(void)
{
	MPU_SDA_OUT();//sda线输出
	MPU_IIC_SCL=0;
	MPU_IIC_SDA=0;//STOP:when CLK is high DATA change form low to high
 	MPU_IIC_Delay();
	MPU_IIC_SCL=1;  
	MPU_IIC_SDA=1;//发送I2C总线结束信号
	MPU_IIC_Delay();							   	
}

//IIC发送一个字节
//返回从机有无应答
//1,有应答
//0,无应答			  
void MPU_IIC_Send_Byte(u8 txd)
{                        
    u8 t;   
	
	MPU_SDA_OUT(); 	    
    MPU_IIC_SCL=0;//拉低时钟开始数据传输
    for(t=0;t<8;t++)
    {              
        MPU_IIC_SDA=(txd&0x80)>>7;
        txd<<=1; 	  
		MPU_IIC_SCL=1;
		MPU_IIC_Delay(); 
		MPU_IIC_SCL=0;	
		MPU_IIC_Delay();
    }	 
} 	    
//读1个字节,ack=1时,发送ACK,ack=0,发送nACK   
u8 MPU_IIC_Read_Byte(unsigned char ack)
{
	unsigned char i,receive=0;
	MPU_SDA_IN();//SDA设置为输入
    for(i=0;i<8;i++ )
	{
        MPU_IIC_SCL=0; 
        MPU_IIC_Delay();
		MPU_IIC_SCL=1;
        receive<<=1;
        if(MPU_READ_SDA)
			receive++;   
		MPU_IIC_Delay(); 
    }					 
    if (!ack)
        MPU_IIC_NAck();//发送nACK
    else
        MPU_IIC_Ack(); //发送ACK   
    return receive;
}

//等待应答信号到来
//返回值:1,接收应答失败
//        0,接收应答成功
u8 MPU_IIC_Wait_Ack(void)
{
	u8 ucErrTime=0;
	
	MPU_SDA_IN();      //SDA设置为输入  
	MPU_IIC_SDA=1;
	MPU_IIC_Delay();	   
	MPU_IIC_SCL=1;
	MPU_IIC_Delay();	 
	while(MPU_READ_SDA)
	{
		ucErrTime++;
		if(ucErrTime>250)
		{
			MPU_IIC_Stop();
			return 1;
		}
	}
	MPU_IIC_SCL=0;//时钟输出0 	   
	return 0;  
} 
//产生ACK应答
void MPU_IIC_Ack(void)
{
	MPU_IIC_SCL=0;
	MPU_SDA_OUT();
	MPU_IIC_SDA=0;
	MPU_IIC_Delay();
	MPU_IIC_SCL=1;
	MPU_IIC_Delay();
	MPU_IIC_SCL=0;
}
//不产生ACK应答		    
void MPU_IIC_NAck(void)
{
	MPU_IIC_SCL=0;
	MPU_SDA_OUT();
	MPU_IIC_SDA=1;
	MPU_IIC_Delay();
	MPU_IIC_SCL=1;
	MPU_IIC_Delay();
	MPU_IIC_SCL=0;
}

1.3 IIC 通信写入读取数据

//IIC写一个字节 
//reg:寄存器地址
//data:数据
//返回值:0,正常
//    其他,错误代码
u8 MPU_Write_Byte(u8 reg,u8 data) 				 
{ 
    MPU_IIC_Start(); 
	MPU_IIC_Send_Byte((MPU_ADDR<<1)|0);//发送器件地址+写命令	
	if(MPU_IIC_Wait_Ack())	//等待应答
	{
		MPU_IIC_Stop();		 
		return 1;		
	}
    MPU_IIC_Send_Byte(reg);	//写寄存器地址
    MPU_IIC_Wait_Ack();		//等待应答 
	MPU_IIC_Send_Byte(data);//发送数据
	if(MPU_IIC_Wait_Ack())	//等待ACK
	{
		MPU_IIC_Stop();	 
		return 1;		 
	}		 
    MPU_IIC_Stop();	 
	return 0;
}

//IIC读一个字节 
//reg:寄存器地址 
//返回值:读到的数据
u8 MPU_Read_Byte(u8 reg)
{
	u8 res;
    MPU_IIC_Start(); 
	MPU_IIC_Send_Byte((MPU_ADDR<<1)|0);//发送器件地址+写命令	
	MPU_IIC_Wait_Ack();		//等待应答 
    MPU_IIC_Send_Byte(reg);	//写寄存器地址
    MPU_IIC_Wait_Ack();		//等待应答
    MPU_IIC_Start();
	MPU_IIC_Send_Byte((MPU_ADDR<<1)|1);//发送器件地址+读命令	
    MPU_IIC_Wait_Ack();		//等待应答 
	res=MPU_IIC_Read_Byte(0);//读取数据,发送nACK 
    MPU_IIC_Stop();			//产生一个停止条件 
	return res;		
}

//IIC连续写
//addr:器件地址 
//reg:寄存器地址
//len:写入长度
//buf:数据区
//返回值:0,正常
//    其他,错误代码
u8 MPU_Write_Len(u8 addr,u8 reg,u8 len,u8 *buf)
{
	u8 i; 
    MPU_IIC_Start(); 
	MPU_IIC_Send_Byte((addr<<1)|0);//发送器件地址+写命令	
	if(MPU_IIC_Wait_Ack())	//等待应答
	{
		MPU_IIC_Stop();		 
		return 1;		
	}
    MPU_IIC_Send_Byte(reg);	//写寄存器地址
    MPU_IIC_Wait_Ack();		//等待应答
	for(i=0;i<len;i++)
	{
		MPU_IIC_Send_Byte(buf[i]);	//发送数据
		if(MPU_IIC_Wait_Ack())		//等待ACK
		{
			MPU_IIC_Stop();	 
			return 1;		 
		}		
	}    
    MPU_IIC_Stop();	 
	return 0;	
} 
//IIC连续读
//addr:器件地址
//reg:要读取的寄存器地址
//len:要读取的长度
//buf:读取到的数据存储区
//返回值:0,正常
//    其他,错误代码
u8 MPU_Read_Len(u8 addr,u8 reg,u8 len,u8 *buf)
{ 
 	MPU_IIC_Start(); 
	MPU_IIC_Send_Byte((addr<<1)|0);//发送器件地址+写命令	
	if(MPU_IIC_Wait_Ack())	//等待应答
	{
		MPU_IIC_Stop();		 
		return 1;		
	}
    MPU_IIC_Send_Byte(reg);	//写寄存器地址
    MPU_IIC_Wait_Ack();		//等待应答
    MPU_IIC_Start();
	MPU_IIC_Send_Byte((addr<<1)|1);//发送器件地址+读命令	
    MPU_IIC_Wait_Ack();		//等待应答 
	while(len)
	{
		if(len==1)
			*buf=MPU_IIC_Read_Byte(0);//读数据,发送nACK 
		else 
			*buf=MPU_IIC_Read_Byte(1);		//读数据,发送ACK  
		len--;
		buf++; 
	}    
    MPU_IIC_Stop();	//产生一个停止条件 
	return 0;	
}

至此,与 IIC 相关的代码已经实现了,上面的程序只要是 IIC 通信的设备,均可以使用。

2. MPU6050读取数据

首先需要进行设备初始化,为数据通信做好准备。

2.1 分为以下几个步骤:

(来自原子教程)

(1) 初始化 IIC 接口

MPU6050 采用 IIC 与 STM32F1 通信,需要先初始化与 MPU6050 连接的 SDA和 SCL 数据线。

(2)复位 MPU6050

这一步让 MPU6050 内部所有寄存器恢复默认值,通过对电源管理寄存器 1(0X6B)的bit7 写 1 实现。 复位后, 电源管理寄存器 1 恢复默认值(0X40),然后必须设置该寄存器为0X00,以唤醒 MPU6050,进入正常工作状态。

(3)设置角速度传感器(陀螺仪)和加速度传感器的满量程范围

这一步设置两个传感器的满量程范围(FSR),分别通过陀螺仪配置寄存器(0X1B)和加速度传感器配置寄存器(0X1C)设置。一般设置陀螺仪的满量程范围为±2000dps,加速度传感器的满量程范围为±2g

(4)其他参数设置

需要配置的参数有:关闭中断、关闭 AUX IIC 接口、禁止 FIFO、设置陀
螺仪采样率和设置数字低通滤波器(DLPF)等

这里不用中断方式读取数据,关闭中断即可,也没用到 AUX IIC 接口外接其他传感器,同样的关闭这些接口。分别通过中断使能寄存器(0X38)和用户控制寄存器(0X6A)控制。 MPU6050 可以使用 FIFO 存储传感器数据,此处没有用到,关闭所有 FIFO 通道,这个通过 FIFO 使能寄存器(0X23)控制,默认都是 0(即禁止 FIFO),所以用默认值就可以了。陀螺仪采样率通过采样率分频寄存器(0X19)控制,这个采样率一般设置为 50 。数字低通滤波器(DLPF)则通过配置寄存器(0X1A)设置,一般设置 DLPF 为带宽的 1/2

(5)配置系统时钟源并使能角速度传感器和加速度传感器

系统时钟源同样是通过电源管理寄存器 1(0X1B)来设置,该寄存器的最低三位用于设置系统时钟源选择,默认值是 0(内部 8M RC 震荡),不过一般设置为 1,选择 x 轴陀螺 PLL 作为时钟源,以获得更高精度的时钟。同时,使能角速度传感器和加速度传感器,这两个操作通过电源管理寄存器 2(0X6C)来设置,设置对应位为 0 即可开启。

至此, MPU6050 的初始化就完成了,可以正常工作了(其他未设置的寄存器全部采用默认值即可),接下来,就可以通过读取相关寄存器,得到加速度传感器、角速度传感器和温度传感器的数据。

对于寄存器介绍,因内容繁多,此处省略,自行查看数据手册即可。


//初始化MPU6050
//返回值:0,成功
//    其他,错误代码
u8 MPU_Init(void)
{ 
	u8 res; 
	
	MPU_IIC_Init();//初始化IIC总线
	MPU_Write_Byte(MPU_PWR_MGMT1_REG,0X80);	//复位MPU6050
   	delay_ms(100);
	MPU_Write_Byte(MPU_PWR_MGMT1_REG,0X00);	//唤醒MPU6050 
	MPU_Set_Gyro_Fsr(3);					//陀螺仪传感器,±2000dps
	MPU_Set_Accel_Fsr(0);					//加速度传感器,±2g
	MPU_Set_Rate(50);						//设置采样率50Hz
	MPU_Write_Byte(MPU_INT_EN_REG,0X00);	//关闭所有中断
	MPU_Write_Byte(MPU_USER_CTRL_REG,0X00);	//I2C主模式关闭
	MPU_Write_Byte(MPU_FIFO_EN_REG,0X00);	//关闭FIFO
	MPU_Write_Byte(MPU_INTBP_CFG_REG,0X80);	//INT引脚低电平有效
	res=MPU_Read_Byte(MPU_DEVICE_ID_REG); 
	if(res==MPU_ADDR)//器件ID正确
	{
		MPU_Write_Byte(MPU_PWR_MGMT1_REG,0X01);	//设置CLKSEL,PLL X轴为参考
		MPU_Write_Byte(MPU_PWR_MGMT2_REG,0X00);	//加速度与陀螺仪都工作
		MPU_Set_Rate(50);		//设置采样率为50Hz
 	}
	else 
		return 1;
	return 0;
}

2.2 初始化用到的参数设置:


//设置MPU6050陀螺仪传感器满量程范围
//fsr:0,±250dps;1,±500dps;2,±1000dps;3,±2000dps
//返回值:0,设置成功
//    其他,设置失败 
u8 MPU_Set_Gyro_Fsr(u8 fsr)
{
	return MPU_Write_Byte(MPU_GYRO_CFG_REG,fsr<<3);//设置陀螺仪满量程范围  
}
//设置MPU6050加速度传感器满量程范围
//fsr:0,±2g;1,±4g;2,±8g;3,±16g
//返回值:0,设置成功
//    其他,设置失败 
u8 MPU_Set_Accel_Fsr(u8 fsr)
{
	return MPU_Write_Byte(MPU_ACCEL_CFG_REG,fsr<<3);//设置加速度传感器满量程范围  
}
//设置MPU6050的数字低通滤波器
//lpf:数字低通滤波频率(Hz)
//返回值:0,设置成功
//    其他,设置失败 
u8 MPU_Set_LPF(u16 lpf)
{
	u8 data=0;
	if(lpf>=188)data=1;
	else if(lpf>=98)data=2;
	else if(lpf>=42)data=3;
	else if(lpf>=20)data=4;
	else if(lpf>=10)data=5;
	else data=6; 
	return MPU_Write_Byte(MPU_CFG_REG,data);//设置数字低通滤波器  
}
//设置MPU6050的采样率(假定Fs=1KHz)
//rate:4~1000(Hz)
//返回值:0,设置成功
//    其他,设置失败 
u8 MPU_Set_Rate(u16 rate)
{
	u8 data;
	if(rate>1000)rate=1000;
	if(rate<4)rate=4;
	data=1000/rate-1;
	data=MPU_Write_Byte(MPU_SAMPLE_RATE_REG,data);	//设置数字低通滤波器
 	return MPU_Set_LPF(rate/2);	//自动设置LPF为采样率的一半
}

2.3 MPU6050 原始数据的读取:


//得到温度值
//返回值:温度值(扩大了100倍)
short MPU_Get_Temperature(void)
{
    u8 buf[2]; 
    short raw;
	float temp;
	
	MPU_Read_Len(MPU_ADDR,MPU_TEMP_OUTH_REG,2,buf); 
    raw=((u16)buf[0]<<8)|buf[1];  
    temp=36.53+((double)raw)/340;  
    return temp*100;;
}
//得到陀螺仪值(原始值)
//gx,gy,gz:陀螺仪x,y,z轴的原始读数(带符号)
//返回值:0,成功
//    其他,错误代码
u8 MPU_Get_Gyroscope(short *gx,short *gy,short *gz)
{
    u8 buf[6],res;  
	res=MPU_Read_Len(MPU_ADDR,MPU_GYRO_XOUTH_REG,6,buf);
	if(res==0)
	{
		*gx=((u16)buf[0]<<8)|buf[1];  
		*gy=((u16)buf[2]<<8)|buf[3];  
		*gz=((u16)buf[4]<<8)|buf[5];
	} 	
    return res;;
}
//得到加速度值(原始值)
//gx,gy,gz:陀螺仪x,y,z轴的原始读数(带符号)
//返回值:0,成功
//    其他,错误代码
u8 MPU_Get_Accelerometer(short *ax,short *ay,short *az)
{
    u8 buf[6],res; 
	
	res=MPU_Read_Len(MPU_ADDR,MPU_ACCEL_XOUTH_REG,6,buf);
	if(res==0)
	{
		*ax=((u16)buf[0]<<8)|buf[1];  
		*ay=((u16)buf[2]<<8)|buf[3];  
		*az=((u16)buf[4]<<8)|buf[5];
	} 	
    return res;;
}

至此,MPU6050的原始数据就读取完毕,但我们得到的这些数据无法直接使用,我们期望得到的是姿态数据,也就是欧拉角:航向角(yaw)、横滚角(roll)和俯仰角(pitch)。要得到欧拉角数据,需利用我们得到的原始数据,进行姿态融合解算,直接计算是比较复杂的,但MPU6050 自带了数字运动处理器 DMP,并且,InvenSense 提供了一个 MPU6050 的嵌入式运动驱动库,结合 MPU6050 的 DMP,可以将得到的原始数据,直接转换成四元数输出,而得到四元数之后,就可以很方便的计算出欧拉角,从而得到 yaw、 roll 和 pitch。

通过内置的 DMP,大大简化了代码的设计,且 MCU 不用进行姿态解算过程,大大降低了 MCU 的负担,从而有更多的时间去处理其他事件,提高系统实时性。

3. 数据融合

通过 MPU6050 的 DMP 输出的四元数是 q30 格式的,也就是浮点数放大了 2 的 30 次方倍。在换算成欧拉角之前,必须先将其转换为浮点数,也就是除以 2 的 30 次方,然后再进行计算,计算公式为:


q0=quat[0] / q30; //q30 格式转换为浮点数
q1=quat[1] / q30;
q2=quat[2] / q30;
q3=quat[3] / q30;
//计算得到俯仰角/横滚角/航向角
pitch=asin(-2 * q1 * q3 + 2 * q0* q2)* 57.3; //俯仰角
roll=atan2(2 * q2 * q3 + 2 * q0 * q1, -2 * q1 * q1 - 2 * q2* q2 + 1)* 57.3; //横滚角
yaw=atan2(2*(q1q2 + q0q3),q0q0+q1q1-q2q2-q3q3) * 57.3; //航向角


其中 quat[0]~ quat[3]是 MPU6050 的 DMP 解算后的四元数, q30 格式,所以要除以一个2 的 30 次方,其中 q30 是一个常量: 1073741824,即 2 的 30 次方,然后带入公式,计算出欧拉角。上述计算公式的 57.3 是弧度转换为角度,即 180/π,这样得到的结果就是以度(°)为单位的。

InvenSense 提供的 MPU6050 运动驱动库是基于 MSP430 的,需要将其移植一下,才可以用到 STM32F1 上面。

在这里插入图片描述

驱动库文件如图。重点就是两个 c 文件: inv_mpu.c 和 inv_mpu_dmp_motion_driver.c。

官方 DMP 驱动库移植起来,还是比较简单的,主要是实现这 4 个函数: **i2c_write,i2c_read, delay_ms 和 get_ms。**对应着我们实现的:
MPU_Write_Len,MPU_Read_Len,delay_ms(系统滴答实现),get_ms空函数替代。

3.1 添加的函数

DMP初始化:

//mpu6050,dmp初始化
//返回值:0,正常
//    其他,失败
u8 mpu_dmp_init(void)
{
	u8 res=0;
	MPU_IIC_Init(); 	//初始化IIC总线
	if(mpu_init()==0)	//初始化MPU6050
	{	 
		res=mpu_set_sensors(INV_XYZ_GYRO|INV_XYZ_ACCEL);//设置所需要的传感器
		if(res)return 1; 
		res=mpu_configure_fifo(INV_XYZ_GYRO|INV_XYZ_ACCEL);//设置FIFO
		if(res)return 2; 
		res=mpu_set_sample_rate(DEFAULT_MPU_HZ);	//设置采样率
		if(res)return 3; 
		res=dmp_load_motion_driver_firmware();		//加载dmp固件
		if(res)return 4; 
		res=dmp_set_orientation(inv_orientation_matrix_to_scalar(gyro_orientation));//设置陀螺仪方向
		if(res)return 5; 
		res=dmp_enable_feature(DMP_FEATURE_6X_LP_QUAT|DMP_FEATURE_TAP|	//设置dmp功能
		    DMP_FEATURE_ANDROID_ORIENT|DMP_FEATURE_SEND_RAW_ACCEL|DMP_FEATURE_SEND_CAL_GYRO|
		    DMP_FEATURE_GYRO_CAL);
		if(res)return 6; 
		res=dmp_set_fifo_rate(DEFAULT_MPU_HZ);	//设置DMP输出速率(最大不超过200Hz)
		if(res)return 7;   
		res=run_self_test();		//自检
		if(res)return 8;    
		res=mpu_set_dmp_state(1);	//使能DMP
		if(res)return 9;     
	}else return 10;
	return 0;
}

读取姿态解算后的数据


//得到dmp处理后的数据(注意,本函数需要比较多堆栈,局部变量有点多)
//pitch:俯仰角 精度:0.1°   范围:-90.0° <---> +90.0°
//roll:横滚角  精度:0.1°   范围:-180.0°<---> +180.0°
//yaw:航向角   精度:0.1°   范围:-180.0°<---> +180.0°
//返回值:0,正常
//    其他,失败
u8 mpu_dmp_get_data(float *pitch,float *roll,float *yaw)
{
	float q0=1.0f,q1=0.0f,q2=0.0f,q3=0.0f;
	unsigned long sensor_timestamp;
	short gyro[3], accel[3], sensors;
	unsigned char more;
	long quat[4]; 
	
	if(dmp_read_fifo(gyro, accel, quat, &sensor_timestamp, &sensors,&more))return 1;	 
	if(sensors&INV_WXYZ_QUAT) 
	{
		q0 = quat[0] / q30;	//q30格式转换为浮点数
		q1 = quat[1] / q30;
		q2 = quat[2] / q30;
		q3 = quat[3] / q30; 
		//计算得到俯仰角/横滚角/航向角
		*pitch = asin(-2 * q1 * q3 + 2 * q0* q2)* 57.3;	// pitch
		*roll  = atan2(2 * q2 * q3 + 2 * q0 * q1, -2 * q1 * q1 - 2 * q2* q2 + 1)* 57.3;	// roll
		*yaw   = atan2(2*(q1*q2 + q0*q3),q0*q0+q1*q1-q2*q2-q3*q3) * 57.3;	//yaw
	}else return 2;
	return 0;
}

这里是移植了 DMP 的库,也可以通过读取原始数据,通过 MCU 用数学公式计算出欧拉角。

3.2 主函数实现及数据上报到PC端上位机

//串口1发送1个字符 
//c:要发送的字符
void usart1_send_char(u8 c)
{
	while((USART1->SR&0X40)==0);//等待上一次发送完毕   
	USART1->DR=c;   	
} 

//传送数据给匿名四轴上位机软件(V2.6版本)
//fun:功能字. 0XA0~0XAF
//data:数据缓存区,最多28字节!!
//len:data区有效数据个数
void usart1_niming_report(u8 fun,u8*data,u8 len)
{
	u8 send_buf[32];
	u8 i;
	
	if(len>28)
		return;	//最多28字节数据 
	send_buf[len+3]=0;	//校验数置零
	send_buf[0]=0X88;	//帧头
	send_buf[1]=fun;	//功能字
	send_buf[2]=len;	//数据长度
	for(i=0;i<len;i++)
		send_buf[3+i]=data[i];			//复制数据
	for(i=0;i<len+3;i++)
		send_buf[len+3]+=send_buf[i];	//计算校验和	
	for(i=0;i<len+4;i++)
		usart1_send_char(send_buf[i]);	//发送数据到串口1 
}


//发送加速度传感器数据和陀螺仪数据
//aacx,aacy,aacz:x,y,z三个方向上面的加速度值
//gyrox,gyroy,gyroz:x,y,z三个方向上面的陀螺仪值
void mpu6050_send_data(short aacx,short aacy,short aacz,short gyrox,short gyroy,short gyroz)
{
	u8 tbuf[12]; 
	tbuf[0]=(aacx>>8)&0XFF;
	tbuf[1]=aacx&0XFF;
	tbuf[2]=(aacy>>8)&0XFF;
	tbuf[3]=aacy&0XFF;
	tbuf[4]=(aacz>>8)&0XFF;
	tbuf[5]=aacz&0XFF; 
	tbuf[6]=(gyrox>>8)&0XFF;
	tbuf[7]=gyrox&0XFF;
	tbuf[8]=(gyroy>>8)&0XFF;
	tbuf[9]=gyroy&0XFF;
	tbuf[10]=(gyroz>>8)&0XFF;
	tbuf[11]=gyroz&0XFF;
	usart1_niming_report(0XA1,tbuf,12);//自定义帧,0XA1
}	


//通过串口1上报结算后的姿态数据给电脑
//aacx,aacy,aacz:x,y,z三个方向上面的加速度值
//gyrox,gyroy,gyroz:x,y,z三个方向上面的陀螺仪值
//roll:横滚角.单位0.01度。 -18000 -> 18000 对应 -180.00  ->  180.00度
//pitch:俯仰角.单位 0.01度。-9000 - 9000 对应 -90.00 -> 90.00 度
//yaw:航向角.单位为0.1度 0 -> 3600  对应 0 -> 360.0度
void usart1_report_imu(short aacx,short aacy,short aacz,short gyrox,short gyroy,short gyroz,short roll,short pitch,short yaw)
{
	u8 tbuf[28]; 
	u8 i;
	for(i=0;i<28;i++)
		tbuf[i]=0;//清0
	tbuf[0]=(aacx>>8)&0XFF;
	tbuf[1]=aacx&0XFF;
	tbuf[2]=(aacy>>8)&0XFF;
	tbuf[3]=aacy&0XFF;
	tbuf[4]=(aacz>>8)&0XFF;
	tbuf[5]=aacz&0XFF; 
	tbuf[6]=(gyrox>>8)&0XFF;
	tbuf[7]=gyrox&0XFF;
	tbuf[8]=(gyroy>>8)&0XFF;
	tbuf[9]=gyroy&0XFF;
	tbuf[10]=(gyroz>>8)&0XFF;
	tbuf[11]=gyroz&0XFF;	
	tbuf[18]=(roll>>8)&0XFF;
	tbuf[19]=roll&0XFF;
	tbuf[20]=(pitch>>8)&0XFF;
	tbuf[21]=pitch&0XFF;
	tbuf[22]=(yaw>>8)&0XFF;
	tbuf[23]=yaw&0XFF;
	usart1_niming_report(0XAF,tbuf,28);//飞控显示帧,0XAF
}   


 int main(void)
 { 
	u8 t=0,report=1;			//默认开启上报
	u8 key;
	float pitch,roll,yaw; 		//欧拉角
	short aacx,aacy,aacz;		//加速度传感器原始数据
	short gyrox,gyroy,gyroz;	//陀螺仪原始数据
	short temp;					//温度	    
	 
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
	delay_init();	    	 //延时函数初始化	  
	//uart_init(500000);	 	//串口初始化为9600
	uart_init(128000);
	usmart_dev.init(72);		//初始化USMART
	LED_Init();		  			//初始化与LED连接的硬件接口
	KEY_Init();					//初始化按键
	LCD_Init();			   		//初始化LCD  
	MPU_Init();					//初始化MPU6050
 	POINT_COLOR=RED;			//设置字体为红色 
	LCD_ShowString(30,50,200,16,16,"Mini STM32");	
	LCD_ShowString(30,70,200,16,16,"MPU6050 TEST");	
	LCD_ShowString(30,90,200,16,16,"ATOM@ALIENTEK");
	LCD_ShowString(30,110,200,16,16,"2015/4/18"); 
	while(mpu_dmp_init())
 	{
		LCD_ShowString(30,130,200,16,16,"MPU6050 Error");
		delay_ms(200);
		LCD_Fill(30,130,239,130+16,WHITE);
 		delay_ms(200);
	}  
	LCD_ShowString(30,130,200,16,16,"MPU6050 OK");
	LCD_ShowString(30,150,200,16,16,"KEY0:UPLOAD ON/OFF");
	POINT_COLOR=BLUE;//设置字体为蓝色 
 	LCD_ShowString(30,170,200,16,16,"UPLOAD ON ");	 
 	LCD_ShowString(30,200,200,16,16," Temp:    . C");	
 	LCD_ShowString(30,220,200,16,16,"Pitch:    . C");	
 	LCD_ShowString(30,240,200,16,16," Roll:    . C");	 
 	LCD_ShowString(30,260,200,16,16," Yaw :    . C");	 
 	while(1)
	{
		key=KEY_Scan(0);
		if(key==KEY0_PRES)
		{
			report=!report;
			if(report)LCD_ShowString(30,170,200,16,16,"UPLOAD ON ");
			else LCD_ShowString(30,170,200,16,16,"UPLOAD OFF");
		}
		if(mpu_dmp_get_data(&pitch,&roll,&yaw)==0)	//!!读取欧拉角!!
		{ 
			temp=MPU_Get_Temperature();	//得到温度值
			MPU_Get_Accelerometer(&aacx,&aacy,&aacz);	//得到加速度传感器数据
			MPU_Get_Gyroscope(&gyrox,&gyroy,&gyroz);	//得到陀螺仪数据
			if(report)
				mpu6050_send_data(aacx,aacy,aacz,gyrox,gyroy,gyroz);//用自定义帧发送加速度和陀螺仪原始数据
			if(report)
				usart1_report_imu(aacx,aacy,aacz,gyrox,gyroy,gyroz,(int)(roll*100),(int)(pitch*100),(int)(yaw*10));
			if((t%10)==0)
			{ 
				if(temp<0)
				{
					LCD_ShowChar(30+48,200,'-',16,0);		//显示负号
					temp=-temp;		//转为正数
				}
				else 
					LCD_ShowChar(30+48,200,' ',16,0);		//去掉负号 
				LCD_ShowNum(30+48+8,200,temp/100,3,16);		//显示整数部分	    
				LCD_ShowNum(30+48+40,200,temp%10,1,16);		//显示小数部分 
				temp=pitch*10;
				if(temp<0)
				{
					LCD_ShowChar(30+48,220,'-',16,0);		//显示负号
					temp=-temp;		//转为正数
				}else LCD_ShowChar(30+48,220,' ',16,0);		//去掉负号 
				LCD_ShowNum(30+48+8,220,temp/10,3,16);		//显示整数部分	    
				LCD_ShowNum(30+48+40,220,temp%10,1,16);		//显示小数部分 
				temp=roll*10;
				if(temp<0)
				{
					LCD_ShowChar(30+48,240,'-',16,0);		//显示负号
					temp=-temp;		//转为正数
				}else LCD_ShowChar(30+48,240,' ',16,0);		//去掉负号 
				LCD_ShowNum(30+48+8,240,temp/10,3,16);		//显示整数部分	    
				LCD_ShowNum(30+48+40,240,temp%10,1,16);		//显示小数部分 
				temp=yaw*10;
				if(temp<0)
				{
					LCD_ShowChar(30+48,260,'-',16,0);		//显示负号
					temp=-temp;		//转为正数
				}else LCD_ShowChar(30+48,260,' ',16,0);		//去掉负号 
				LCD_ShowNum(30+48+8,260,temp/10,3,16);		//显示整数部分	    
				LCD_ShowNum(30+48+40,260,temp%10,1,16);		//显示小数部分  
				t=0;
				LED0=!LED0;//LED闪烁
			}
		}
		t++; 
	} 	
}

参考:

1.ATK-MPU6050六轴传感器模块使用说明(Mini V3)_AN1507.pdf

猜你喜欢

转载自blog.csdn.net/wwt18811707971/article/details/82859193
今日推荐