约瑟夫问题 三种做法

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sdz20172133/article/details/82794073

 

0047:约瑟夫问题

总时间限制: 

1000ms

内存限制: 

65536kB

描述

约瑟夫问题:有n只猴子,按顺时针方向围成一圈选大王(编号从1到n),从第1号开始报数,一直数到m,数到m的猴子退出圈外,剩下的猴子再接着从1开始报数。就这样,直到圈内只剩下一只猴子时,这个猴子就是猴王,编程求输入n,m后,输出最后猴王的编号。
 

输入

每行是用空格分开的两个整数,第一个是 n, 第二个是 m ( 0 < m,n <=300)。最后一行是:

0 0
 

输出

对于每行输入数据(最后一行除外),输出数据也是一行,即最后猴王的编号

样例输入

6 2
12 4
8 3
0 0

样例输出

5
1
7

全局题号

1748

添加于

2018-07-09

提交次数

10

尝试人数

6

通过人数

6

Other language verions

//普通数组实现链表
import java.util.LinkedList;
import java.util.List;
import java.util.Scanner;

public class Main {

	public static void main(String[] args) {
	 Scanner cin=new Scanner(System.in);
	
	 while(true)
	 { 
		 
		  int n=cin.nextInt();
		  int m=cin.nextInt();
		  if(n==0&&m==0)break;
		  int [] a=new int[n+1];
		  int p=0,ans=1,j;//p记录总共选出来来了多少数,ans记录是否到m
		  for(int i=1;i<n;i++)
		    a[i]=i+1;//建立链表
		  a[n]=1;
		  j=n;//现在a[n]=1
		  while(p<n)
		  {
		      while(ans<m)
		      {
		          j=a[j];
		          ans++;
		      }
		      if(p==n-1)
		      System.out.println(a[j]);
		      p++;
		      a[j]=a[a[j]];
		      ans=1;//计数器置1
		  }
		
	 }
 }

}
//模拟

import java.util.LinkedList;
import java.util.List;
import java.util.Scanner;

public class Main {

	public static void main(String[] args) {
	 Scanner cin=new Scanner(System.in);
	
	 while(true)
	 { 
		 LinkedList<Integer> l= new LinkedList<>();
		 int n=cin.nextInt();
		 int m=cin.nextInt();
		 if(n==0&&m==0)break;
		 for(int i=1;i<=n;i++)
		 {
			 l.add(i);
		 }
		 int pos=0;
		 m--; //当前人也要报名
		 while(l.size()>0)
		 { 
			 
			 if(l.size()==1)
			 {
				 System.out.println(l.getFirst());
				 break;
			 }
			 pos+=m;
			 pos=pos%l.size();
			 l.remove(l.get(pos));
			
			 
		 }
		
	 }
 }

}
//list实现链表
import java.util.Arrays;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Main {
    private static int  lastone2(int  n,int k) {
        List<Integer> list=new ArrayList<Integer>(n);
        for(int i=0;i<n;i++)
            list.add(i+1);

         while(list.size()>1)
         {
             for(int i=0;i<k-1;i++)
             {
                 list.add(list.remove(0));//头元素挪动到结尾处

             }
             list.remove(0);
         }
        return list.get(0);
    }

    public static void main(String[] args) {
        Scanner oin=new Scanner(System.in);
        while(oin.hasNext())
        {
        int n=oin.nextInt();
        int k=oin.nextInt();
        if(n==0&&k==0) break;
        System.out.println(lastone2(n, k));
    
        }
      }


}

https://cn.vjudge.net/problem/HihoCoder-1296

提示:约瑟夫问题

小Hi:这个问题其实还蛮有名的,它被称为约瑟夫的问题。

最直观的解法是用循环链表模拟报数、淘汰的过程,复杂度是O(NM)。

今天我们来学习两种更高效的算法,一种是递推,另一种也是递推。第一种递推的公式为:

令f[n]表示当有n个候选人时,最后当选者的编号。
f[1] = 0
f[n] = (f[n - 1] + K) mod n
		

接下来我们用数学归纳法来证明这个递推公式的正确性:

(1) f[1] = 0

显然当只有1个候选人时,该候选人就是当选者,并且他的编号为0。

(2) f[n] = (f[n - 1] + K) mod n

假设我们已经求解出了f[n - 1],并且保证f[n - 1]的值是正确的。

现在先将n个人按照编号进行排序:

0 1 2 3 ... n-1

那么第一次被淘汰的人编号一定是K-1(假设K < n,若K > n则为(K-1) mod n)。将被选中的人标记为"#":

0 1 2 3 ... K-2 # K K+1 K+2 ... n-1

第二轮报数时,起点为K这个候选人。并且只剩下n-1个选手。假如此时把k+1看作0',k+2看作1'...

则对应有:

  0     1 2 3 ... K-2  # K  K+1 K+2 ... n-1
n-K'              n-2'   0'  1'  2' ... n-K-1'

此时在0',1',...,n-2'上再进行一次K报数的选择。而f[n-1]的值已经求得,因此我们可以直接求得当选者的编号s'。

但是,该编号s'是在n-1个候选人报数时的编号,并不等于n个人时的编号,所以我们还需要将s'转换为对应的s。

通过观察,s和s'编号相对偏移了K,又因为是在环中,因此得到s = (s'+K) mod n。

即f[n] = (f[n-1] + k) mod n。

至此递推公式的两个式子我们均证明了其正确性,则对于任意给定的n,我们可以使用该递推式求得f[n],写成伪代码为:

Josephus(N, K):
	f[1] = 0
	For i = 2 .. N
		f[i] = (f[i - 1] + K) mod i
	End For
	Return f[N]

同时由于计算f[i]时,只会用到f[i-1],因此我们还可以将f[]的空间节约,改进后的代码为:

Josephus(N, K):
	ret = 0
	For i = 2 .. N
		ret = (ret + K) mod i
	End For
	Return ret

该算法的时间复杂度为O(N),空间复杂度为O(1)。对于N不是很大的数据来说,可以解决。

小Ho:要是N特别大呢?

小Hi:那么我们就可以用第二种递推,解决的思路仍然和上面相同,而区别在于我们每次减少的N的规模不再是1。

同样用一个例子来说明,初始N=10,K=4:

初始序列:

0 1 2 3 4 5 6 7 8 9

当7号进行过报数之后:

0 1 2 - 4 5 6 - 8 9

在这里一轮报数当中,有两名候选人退出了。而对于任意一个N,K来说,退出的候选人数量为N/K("/"运算表示整除,即带余除法取商)

由于此时起点为8,则等价于:

2 3 4 - 5 6 7 - 0 1

因此我们仍然可以从f[8]的结果来推导出f[10]的结果。

但需要注意的是,此时f[10]的结果并不一定直接等于(f[8] + 8) mod 10。

若f[8]=2,对于原来的序列来说对应了0,(2+8) mod 10 = 0,是对应的;若f[8]=6,则有(6+8) mod 10 = 4,然而实际上应该对应的编号为5。

这是因为在序列(2 3 4 - 5 6 7 - 0 1)中,数字并不是连续的。

因此我们需要根据f[8]的值进行分类讨论。假设f[8]=s,则根据s和N mod K的大小关系有两种情况:

1) s < N mod K : s' = s - N mod K + N
2) s ≥ N mod K : s' = s - N mod K + (s - N mod K) / (K - 1)

此外还有一个问题,由于我们不断的在减小N的规模,最后一定会将N减少到小于K,此时N/K=0。

因此当N小于K时,就只能采用第一种递推的算法来计算了。

最后优化方法的伪代码为:

Josephus(N, K):
	If (N == 1) Then
		Return 0
	End If
	If (N < K) Then
		ret = 0
		For i = 2 .. N
			ret = (ret + K) mod i
		End For
		Return ret
	End If 
	ret = Josephus(N - N / K, K);
	If (ret < N mod K) Then 
		ret = ret - N mod K + N
	Else
		ret = ret - N mod K + (ret - N mod K) / (K - 1)
	End If
	Return ret

改进后的算法可以很快将N的规模减小到K,对于K不是很大的问题能够快速求解。

猜你喜欢

转载自blog.csdn.net/sdz20172133/article/details/82794073