POJ ~ 3155 ~ Hard Life (最大密度子图)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ZscDst/article/details/82824869

上面是,本题需要输出方案数。

 

题解

参见国家集训队2007论文集7.胡伯涛《最小割模型在信息学竞赛中的应用》

注意M = 0时,输出1,1

还有就是精度的控制,理论精度应该为1/n/n,我把eps设置为1e-7也过了。

论文中说的二分要根据 h(g) 和 0 的关系,本题中判断 h(g) 和 0 的关系不行,需要判断 h(g) 和 eps 的关系,不太明白为什么。

做法①:

转化为补集的思想求解,方案则是顺着有流量的边走,可以到达的点就是方案中的点。

//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<vector>
using namespace std;

const int MAXN = 1e5 + 5;
const int INF = 0x3f3f3f3f;

struct Edge
{
    int from, to; double cap, flow;       //起点,终点,容量,流量
    Edge(int u, int v, double c, double f): from(u), to(v), cap(c), flow(f) {}
};
struct Dinic
{
    int n, m, s, t;                //结点数,边数(包括反向弧),源点s,汇点t
    vector<Edge> edges;            //边表。edges[e]和edges[e^1]互为反向弧
    vector<int> G[MAXN];           //邻接表,G[i][j]表示结点i的第j条边在edges数组中的序号
    int d[MAXN];                   //从起点到i的距离(层数差)
    int cur[MAXN];                 //当前弧下标
    bool vis[MAXN];                //BFS分层使用

    void init(int n)
    {
        this->n = n;
        edges.clear();
        for (int i = 0; i <= n; i++) G[i].clear();
    }

    void AddEdge(int from, int to, double cap)
    {
        edges.push_back(Edge(from, to, cap, 0));
        edges.push_back(Edge(to, from, 0, 0));
        m = edges.size();
        G[from].push_back(m - 2);
        G[to].push_back(m - 1);
    }

    bool BFS()//构造分层网络
    {
        memset(vis, 0, sizeof(vis));
        queue<int> Q;
        d[s] = 0;
        vis[s] = true;
        Q.push(s);
        while (!Q.empty())
        {
            int x = Q.front(); Q.pop();
            for (int i = 0; i < G[x].size(); i++)
            {
                Edge& e = edges[G[x][i]];
                if (!vis[e.to] && e.cap > e.flow)
                {
                    vis[e.to] = true;
                    d[e.to] = d[x] + 1;
                    Q.push(e.to);
                }
            }
        }
        return vis[t];
    }

    double DFS(int x, double a)//沿阻塞流增广
    {
        if (x == t || a == 0) return a;
        double flow = 0, f;
        for (int& i = cur[x]; i < G[x].size(); i++)//从上次考虑的弧
        {
            Edge& e = edges[G[x][i]];
            if (d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap - e.flow))) > 0)//多路增广
            {
                e.flow += f;
                edges[G[x][i]^1].flow -= f;
                flow += f;
                a -= f;
                if (a == 0) break;
            }
        }
        return flow;
    }

    double MaxFlow(int s, int t)
    {
        this->s = s; this->t = t;
        double flow = 0;
        while (BFS())
        {
            memset(cur, 0, sizeof(cur));
            flow += DFS(s, INF);
        }
        return flow;
    }

}solve;

const int maxn = 1005;
const double eps = 1e-7;
int n, m, u[maxn], v[maxn], d[maxn], ans;
bool vis[maxn];

bool check(double x)
{
    int s = 0, t = n+1;
    solve.init(t);
    double U = m;
    for (int i = 1; i <= n; i++)
    {
        solve.AddEdge(s, i, U);
        solve.AddEdge(i, t, U+2*x-d[i]);
    }
    for (int i = 1; i <= m; i++)
    {
        solve.AddEdge(u[i], v[i], 1);
        solve.AddEdge(v[i], u[i], 1);
    }
    double MF = solve.MaxFlow(s, t);
    return (U*n-MF)/2 >= eps;
}

void dfs(int u)
{
    ans++;
    vis[u] = true;
    for (int i = 0; i < solve.G[u].size(); i++)
    {
        Edge& e = solve.edges[solve.G[u][i]];
        if (e.cap > e.flow && !vis[e.to]) dfs(e.to);//顺着残留容量不为0的点走
    }
}

int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= m; i++)
    {
        scanf("%d%d", &u[i], &v[i]);
        d[u[i]]++; d[v[i]]++;
    }
    if (m == 0) { printf("1\n1\n"); return 0; }
    double l = 1.0/n, r = m;
    while (r-l > eps)
    {
        double mid = (l+r)/2;
        if (check(mid)) l = mid;
        else r = mid;
    }
    check(l);
    memset(vis, 0, sizeof(vis));
    dfs(0);
    printf("%d\n", ans-1);
    for (int i = 1; i <= n; i++)
        if (vis[i]) printf("%d\n", i);
    return 0;
}

/*
5 6
1 5
5 4
4 2
2 5
1 2
3 1
*/

做法②:

转化为最大权闭合子图,最后一次层次图中的的点即为被选择的点或边,由于最后需要用层次图判断,所以记得清空层次图。

//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<vector>
using namespace std;

const int MAXN = 1e5 + 5;
const int INF = 0x3f3f3f3f;

struct Edge
{
    int from, to; double cap, flow;       //起点,终点,容量,流量
    Edge(int u, int v, double c, double f): from(u), to(v), cap(c), flow(f) {}
};
struct Dinic
{
    int n, m, s, t;                //结点数,边数(包括反向弧),源点s,汇点t
    vector<Edge> edges;            //边表。edges[e]和edges[e^1]互为反向弧
    vector<int> G[MAXN];           //邻接表,G[i][j]表示结点i的第j条边在edges数组中的序号
    int d[MAXN];                   //从起点到i的距离(层数差)
    int cur[MAXN];                 //当前弧下标
    bool vis[MAXN];                //BFS分层使用

    void init(int n)
    {
        this->n = n;
        edges.clear();
        for (int i = 0; i <= n; i++) G[i].clear();
    }

    void AddEdge(int from, int to, double cap)
    {
        edges.push_back(Edge(from, to, cap, 0));
        edges.push_back(Edge(to, from, 0, 0));
        m = edges.size();
        G[from].push_back(m - 2);
        G[to].push_back(m - 1);
    }

    bool BFS()//构造分层网络
    {
        memset(vis, 0, sizeof(vis));
        memset(d, 0, sizeof(d));//因为输出方案要用,所以清空层次图
        queue<int> Q;
        d[s] = 0;
        vis[s] = true;
        Q.push(s);
        while (!Q.empty())
        {
            int x = Q.front(); Q.pop();
            for (int i = 0; i < G[x].size(); i++)
            {
                Edge& e = edges[G[x][i]];
                if (!vis[e.to] && e.cap > e.flow)
                {
                    vis[e.to] = true;
                    d[e.to] = d[x] + 1;
                    Q.push(e.to);
                }
            }
        }
        return vis[t];
    }

    double DFS(int x, double a)//沿阻塞流增广
    {
        if (x == t || a == 0) return a;
        double flow = 0, f;
        for (int& i = cur[x]; i < G[x].size(); i++)//从上次考虑的弧
        {
            Edge& e = edges[G[x][i]];
            if (d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap - e.flow))) > 0)//多路增广
            {
                e.flow += f;
                edges[G[x][i]^1].flow -= f;
                flow += f;
                a -= f;
                if (a == 0) break;
            }
        }
        return flow;
    }

    double MaxFlow(int s, int t)
    {
        this->s = s; this->t = t;
        double flow = 0;
        while (BFS())
        {
            memset(cur, 0, sizeof(cur));
            flow += DFS(s, INF);
        }
        return flow;
    }

}solve;

const int maxn = 1005;
const double eps = 1e-7;
int n, m, u[maxn], v[maxn], d[maxn];

bool check(double x)
{
    double tot = 0;
    int s = 0, t = n+m+1;
    solve.init(t);
    for (int i = 1; i <= n; i++) solve.AddEdge(i, t, x);
    for (int i = 1; i <= m; i++)
    {
        solve.AddEdge(s, i+n, 1); tot += 1;
        solve.AddEdge(i+n, u[i], INF);
        solve.AddEdge(i+n, v[i], INF);
    }
    double MF = solve.MaxFlow(s, t);
    return tot-MF >= eps;
}


int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= m; i++)
    {
        scanf("%d%d", &u[i], &v[i]);
        d[u[i]]++; d[v[i]]++;
    }
    if (m == 0) { printf("1\n1\n"); return 0; }
    double l = 1.0/n, r = m;
    while (r-l > eps)
    {
        double mid = (l+r)/2;
        if (check(mid)) l = mid;
        else r = mid;
    }
    check(l);
    int ans = 0;
    for (int i = 1; i <= n; i++)
        if (solve.d[i]) ans++;
    printf("%d\n", ans);
    for (int i = 1; i <= n; i++)
        if (solve.d[i]) printf("%d ", i);
    return 0;
}

/*
5 6
1 5
5 4
4 2
2 5
1 2
3 1
*/

猜你喜欢

转载自blog.csdn.net/ZscDst/article/details/82824869
今日推荐