ML--集成学习快速理解

什么是集成学习

集成学习是指通过训练多个分类器,然后将这些分类器组合起来,来获得比单个分类器更优的性能。
集成模型是一种能在各种的机器学习任务上提高准确率的强有力技术,集成算法往往是很多数据竞赛关键的一步,能够很好地提升算法的性能。哲学思想为“三个臭皮匠赛过诸葛亮”。拿分类问题举个例,直观的理解,就是单个分类器的分类是可能出错,不可靠的,但是如果多个分类器投票,那可靠度就会高很多。


Boosting方法:串行方法


Bagging方法:并行方法


Boosting

方法描述:Boosting算法的工作机制是首先从训练集用初始权重训练出一个弱学习器1,根据弱学习的学习误差率表现来更新训练样本的权重,使得之前弱学习器1学习误差率高的训练样本点的权重变高,使得这些误差率高的点在后面的弱学习器2中得到更多的重视。然后基于调整权重后的训练集来训练弱学习器2.,如此重复进行,直到弱学习器数达到事先指定的数目T,最终将这T个弱学习器通过集合策略进行整合,得到最终的强学习器。
这里写图片描述

AdaBoost

Adaboost核心思想:改变训练样本的权重,使得被误分类的样本得以得到重视。

过程:

  • 先通过对N个训练样本的学习得到第一个弱分类器;
  • 将分错的样本和其他的新数据一起构成一个新的N个的训练样本,通过对这个样本的学习得到第二个弱分类器 ;
  • 将1和2都分错了的样本加上其他的新样本构成另一个新的N个的训练样本,通过对这个样本的学习得到第三个弱分类器;
  • 最终经过提升的强分类器。即某个数据被分为哪一类要由各分类器权值决定。

图示:
这里写图片描述

算法:
这里写图片描述

这里写图片描述

这里写图片描述

GBDT

 而Gradient Boost与传统的Boost的区别是,每一次的计算是为了减少上一次的残差(residual)(观察值与估计值之间的差值),而为了消除残差,我们可以在残差减少的梯度(Gradient)方向上建立一个新的模型。所以说,在Gradient Boost中,每个新的模型的简历是为了使得之前模型的残差往梯度方向减少,与传统Boost对正确、错误的样本进行加权有着很大的区别。
弱学习器限定了只能使用CART回归树模型

在GBDT的迭代中,假设我们前一轮迭代得到的强学习器是ft−1(x)ft−1(x), 损失函数是L(y,ft−1(x))L(y,ft−1(x)), 我们本轮迭代的目标是找到一个CART回归树模型的弱学习器ht(x)ht(x),让本轮的损失损失L(y,ft(x)=L(y,ft−1(x)+ht(x)) 最小。也就是说,本轮迭代找到决策树,要让样本的损失尽量变得更小。 

每一次建立模型是在之前建立模型损失函数的梯度下降方向。损失函数(loss function)描述的是模型的不靠谱程度,损失函数越大,则说明模型越容易出错。如果我们的模型能够让损失函数持续的下降,则说明我们的模型在不停的改进,而最好的方式就是让损失函数在其梯度(Gradient)的方向上下降。

图示:
这里写图片描述

算法:
这里写图片描述

XGBOOST

  • 传统GBDT以CART作为基分类器,xgboost还支持线性分类器,这个时候xgboost相当于带L1和L2正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题)。
  • 传统GBDT在优化时只用到一阶导数信息,xgboost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数。顺便提一下,xgboost工具支持自定义代价函数,只要函数可一阶和二阶求导。
  • xgboost在代价函数里加入了正则项,用于控制模型的复杂度。正则项里包含了树的叶子节点个数、每个叶子节点上输出的score的L2模的平方和。从Bias-variancetradeoff角度来讲,正则项降低了模型的variance,使学习出来的模型更加简单,防止过拟合,这也是xgboost优于传统GBDT的一个特性。
  • Shrinkage(缩减),相当于学习速率(xgboost中的eta)。xgboost在进行完一次迭代后,会将叶子节点的权重乘上该系数,主要是为了削弱每棵树的影响,让后面有更大的学习空间。实际应用中,一般把eta设置得小一点,然后迭代次数设置得大一点。(补充:传统GBDT的实现也有学习速率)
  • 列抽样(column subsampling)。xgboost借鉴了随机森林的做法,支持列抽样,不仅能降低过拟合,还能减少计算,这也是xgboost异于传统gbdt的一个特性。
  • 对缺失值的处理。对于特征的值有缺失的样本,xgboost可以自动学习出它的分裂方向。
  • xgboost工具支持并行。boosting不是一种串行的结构吗?怎么并行的?注意xgboost的并行不是tree粒度的并行,xgboost也是一次迭代完才能进行下一次迭代的(第t次迭代的代价函数里包含了前面t-1次迭代的预测值)。xgboost的并行是在特征粒度上的。我们知道,决策树的学习最耗时的一个步骤就是对特征的值进行排序(因为要确定最佳分割点),xgboost在训练之前,预先对数据进行了排序,然后保存为block结构,后面的迭代中重复地使用这个结构,大大减小计算量。这个block结构也使得并行成为了可能,在进行节点的分裂时,需要计算每个特征的增益,最终选增益最大的那个特征去做分裂,那么各个特征的增益计算就可以开多线程进行。
  • 可并行的近似直方图算法。树节点在进行分裂时,我们需要计算每个特征的每个分割点对应的增益,即用贪心法枚举所有可能的分割点。当数据无法一次载入内存或者在分布式情况下,贪心算法效率就会变得很低,所以xgboost还提出了一种可并行的近似直方图算法,用于高效地生成候选的分割点。

XGBOOST优点:
  (1)在寻找最佳分割点时,考虑传统的枚举每个特征的所有可能分割点的贪心法效率太低,xgboost实现了一种近似的算法。大致的思想是根据百分位法列举几个可能成为分割点的候选者,然后从候选者中根据上面求分割点的公式计算找出最佳的分割点。
  (2)xgboost考虑了训练数据为稀疏值的情况,可以为缺失值或者指定的值指定分支的默认方向,这能大大提升算法的效率,paper提到50倍。
  (3)特征列排序后以块的形式存储在内存中,在迭代中可以重复使用;虽然boosting算法迭代必须串行,但是在处理每个特征列时可以做到并行。
  (4)按照特征列方式存储能优化寻找最佳的分割点,但是当以行计算梯度数据时会导致内存的不连续访问,严重时会导致cache miss,降低算法效率。paper中提到,可先将数据收集到线程内部的buffer,然后再计算,提高算法的效率。
  (5)xgboost 还考虑了当数据量比较大,内存不够时怎么有效的使用磁盘,主要是结合多线程、数据压缩、分片的方法,尽可能的提高算法的效率。
这里写图片描述

这里写图片描述

Bagging

bagging的个体弱学习器的训练集是通过随机采样得到的。通过T次的随机采样,我们就可以得到T个采样集,对于这T个采样集,我们可以分别独立的训练出T个弱学习器,再对这T个弱学习器通过集合策略来得到最终的强学习器。

图示:
这里写图片描述

random forest

随机森林,顾名思义,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一类被选择最多,就预测这个样本为那一类。 在建立每一棵决策树的过程中,有两点需要注意——采样与完全分裂。首先是两个随机采样的过程,random forest对输入的数据要进行行和列的采样。对于行采样,采用有放回的方式,也就是在采样得到的样本集合中,可能有重复的样本。假设输入样本为N个,那么采样的样本也为N个。这样使得在训练的时候,每一棵树的输入样本都不是全部的样本,使得相对不容易出现over-fitting。然后进行列采样,从M个feature中,选择m个(m << M)。之后就是对采样之后的数据使用完全分裂的方式建立出决策树,这样决策树的某一个叶子节点要么是无法继续分裂的,要么里面的所有样本的都是指向的同一个分类。一般很多的决策树算法都一个重要的步骤——剪枝,但随机森林不这样做,由于之前的两个随机采样的过程保证了随机性,所以就算不剪枝,也不会出现over-fitting。 按这种算法得到的随机森林中的每一棵都是很弱的,但是大家组合起来就很厉害了。可以这样比喻随机森林算法:每一棵决策树就是一个精通于某一个窄领域的专家(因为我们从M个feature中选择m让每一棵决策树进行学习),这样在随机森林中就有了很多个精通不同领域的专家,对一个新的问题(新的输入数据),可以用不同的角度去看待它,最终由各个专家,投票得到结果。

这里写图片描述

总结

  • 首先,从统计的方面来看,由于学习任务的假设空间往往很大,可能有多个假设在训练集上达到同等性能。,此时如果使用单学习器可能因误选而导致泛化性能不佳,结合多个学习器可以减少这个风险。
  • 从计算方面来讲,学习算法往往会陷入局部极小,有的局部极小点所对应的的泛化性能可能很糟糕。通过多次运行之后进行结合,可以降低陷入糟糕局部极小点的风险。
  • 从表示的方面来看,某些学习任务的真实假设可能不在当前学习算法所考虑的假设空间中,此时使用单学习器肯定无用,而通过结合多个学习器,由于相应的假设空间有所扩大,有可能学得更好的近似。

bagging就是大家都是学渣,每道题都由随机选出的一群学渣投票决定,这样需要的学渣比较多,而且每个学渣还都得很努力学习。
boosting也是一群学渣,但每个人虽然总分菜,却是因为偏科导致的,每个学渣都贡献自己最擅长的那个题目。这样boosting需要的每个学渣都豪不费力,但是整体上更强了。xgb的学渣还通过预习,让自己偏科的科目学得更省力。所以整体上xgb看起来是非常省力的一群学渣组成,但是拿到的分数却很高。


二者的主要区别是取样方式不同。bagging采用均匀取样,而Boosting根据错误率来取样,因此boosting的分类精度要优于Bagging。bagging的训练集的选择是随机的,各轮训练集之间相互独立,而boostlng的各轮训练集的选择与前面各轮的学习结果有关;bagging的各个预测函数没有权重,而boosting是有权重的;bagging的各个预测函数可以并行生成,而boosting的各个预测函数只能顺序生成。对于象神经网络这样极为耗时的学习方法。bagging可通过并行训练节省大量时间开销。
bagging和boosting都可以有效地提高分类的准确性。在大多数数据集中,boosting的准确性比bagging高。在有些数据集中,boosting会引起退化—- Overfit。

猜你喜欢

转载自blog.csdn.net/Dooonald/article/details/82378184