【OpenMV学习笔记】 pca9685学习之用python尝试写代码

#定义一个底座运行模块
def chassis_angle_analy():
    print('进入底座运行')
    x_chassis_ball = 30.0
    y_chassis_ball = 200.0
    chassised_angle=0
    chassis_angle=0
    while (1):
        chassised_angle=math.atan(x_chassis_ball/y_chassis_ball) #得到相对弧度
        chassised_angle=chassised_angle*180/3.14   #转换成角度
        chassised_angle=90-chassised_angle/0.34   #0.34=50/17  转换成舵机绝对角度
        print('底盘绝对角度是:')
        print( chassised_angle)
        if 0<=chassised_angle<=180:
            while(chassis_angle<chassised_angle):
                servo.position(0,chassis_angle)
                chassis_angle+=1
                time.sleep(30)
            while(chassis_angle>chassised_angle):
                servo.position(0,chassis_angle)
                chassis_angle-=1
                time.sleep(30)
        else:
            print('底座角度已经超出范围!')
        break
#手爪收紧函数
def hand_hold():
    pass
    print('手爪收紧')
    hand_angle=160
    max_hand_angle=160#手爪初始状态
    min_hand_angle=60

    while(min_hand_angle<=hand_angle):
        hand_angle+=1
        servo.position(4,hand_angle)
        time.sleep(30)
#抓到球三个电机回收的动作
def catchedback():
    print('恢复位置')
    while(elbow_angle!=max_elbow_angle or arm_angle!=max_arm_angle or chassis_angle!=90)
        pass
        i=3
        while(i>=0):
        #底座,手臂,肘,手爪,对应0,1,2,3
            i=i-1
            if i==2 and elbow_angle<=max_elbow_angle
                servo.position(i,elbow_angle)
                elbow_angle++
            elif i==1 and arm_angle<=max_arm_angle
                servo.position(i,arm_angle)
                arm_angle++
            elif i==0 and chassis_angle!=90
                if chassis<90
                    ervo.position(i,chassis_angle)
                    arm_angle++
                else 
                    ervo.position(i,chassis_angle)
                    arm_angle--
#定义一个所有机械臂电机伸出去一起抓球的动作
def catch()
chassised_angle=math.atan(x_chassis_ball/y_chassis_ball) #得到相对弧度
chassised_angle=chassised_angle*180/3.14   #转换成角度
chassised_angle_goal=90-chassised_angle/0.34   #0.34=50/17  转换成舵机绝对角度
print('底盘绝对角度是:')
print( chassised_angle)

#arm_angle_goal和elbow_angle_goal是目标角度
chassis_ball=math.sqrt(x_chassis**2+y_chassis**2) 
arm_angle_goal=mant.atan(chassis_high/chassis_ball)    #角度:底座——球 & ——水平线
arm_ball=math.sqrt(chassis_ball*chassis_ball+chassis_high*chassis_high) #臂舵机到球距离
#手臂和水平线角度余弦定理c*c = a*a + b*b - 2*a*b*cosC求反余弦减去臂舵机到球距离
arm_angle_goal= (math.acos((arm_long*arm_long + arm_ball*arm_ball - elbow_hand_long*elbow_hand_long)/(2*arm_long*arm_ball))-arm_angle_goal)*180/math.pi #手臂和水平线角度

elbow_angle_goal = matn.acos((elbow_hand_long*elbow_hand_long + arm_long*arm_long - arm_ball*arm_ball )/(2 * elbow_hand_long * arm_long))*180/math.pi#臂肘之间的角度
elbow_angle_goal = elbow_angle_goal-90+arm_angle_goal  #肘舵机于竖线的角度
print('底座目标角度:')
print('chassised_angle')
print('手臂目标角度:')
print('arm_angle_goal')
print('肘部目标角度:')
print('elbow_angle_goal')

while(elbow_angle!=elbow_angle_goal or arm_angle!= arm_angle_goal or chassis_angle!= chassis_angle_goal or hand_angle!=min_hand_angle )
    i=4
    while(i>=0)
        i=i-1
        if i==3 and hand_angle>min_hand_angle
            servo.position(i,hand_angle)
            hand_angle--
        elif i==2 and elbow_angle<elbow_angle_goal
            pass
            servo.position(i,elbow_ angle)
            elbow_angle++

        elif i==1 and
            pass
        elif i==0 and 
 while(i-100<160):
        i=i+10
        img.draw_line((5, 5, 5, 110), color=(255,0,0))
        img.draw_string(5,110, "Y")
        img.draw_line((5, 5, 155, 5), color=(255,0,0))
        img.draw_string(155,5, "X")
        img.draw_cross(i,5,size=5)
        img.draw_cross(5,i,size=5)
#手爪收紧函数
def hand_hold():
    pass
    print('手爪收紧')
    hand_angle=160
    max_hand_angle=160#手爪初始状态
    min_hand_angle=60

    while(min_hand_angle<=hand_angle):
        hand_angle+=1
        servo.position(4,hand_angle)
        time.sleep(30)

# 舵机控制示例。
#
# 这个例子演示了舵机扩展板。请按照以下步骤操作:
#
#   1. 连接舵机到任何PWM输出。
#   2. 将3.7v电池(或5V电源)连接到VIN和GND。
#   3. 将pca9685.py和servo.py复制到OpenMV并重置。
#   4. 在IDE中连接并运行此脚本。

import sensor, image, time, math

from servo import Servos
from machine import I2C, Pin

red_threshold   = ( 45,   83,    20,   57,   -10,   60)

sensor.reset() # 初始化摄像头
sensor.set_pixformat(sensor.RGB565) # 格式为 RGB565.
sensor.set_framesize(sensor.QQVGA) # 使用 QQVGA 速度快一些
sensor.skip_frames(time = 2000) # 跳过2000s,使新设置生效,并自动调节白平衡
sensor.skip_frames(10) # Let new settings take affect.

sensor.set_auto_gain(False) # 关闭自动自动增益。默认开启的,在颜色识别中,一定要关闭白平衡。
sensor.set_auto_whitebal(False)
#关闭白平衡。白平衡是默认开启的,在颜色识别中,一定要关闭白平衡。
clock = time.clock() # 追踪帧率

i2c = I2C(sda=Pin('P5'), scl=Pin('P4'))
servo = Servos(i2c, address=0x40, freq=50, min_us=650, max_us=2800, degrees=180)

K=5000#the value should be measured得到mm
x_chassis=0
y_chassis=0
x_camera=0
l_camera=0
i=0
arm_angle_goal=0
elbow_angle_goal=0
chassised_angle=0
chassised_angle_goal=0
chassis_angle_goal=0
arm_ball=0
chassis_ball=0
chassis_high=0
chassis_angle=0      #底盘舵机角度
arm_angle=0          #臂舵机角度
elbow_angle=0        #肘舵机角度
hand_angle=0         #手爪舵机角度


max_chassis_angle=180     #底盘舵机复位角度
min_chassis_angle=0       #底盘舵机有效角度
max_arm_angle=93        #臂舵机复位角度
min_arm_angle=0          #臂舵机有效角度
max_elbow_angle=180       #肘舵机复位角度
min_elbow_angle=0        #肘舵机有效角度
max_hand_angle=120        #手爪舵复位机角度
min_hand_angle=60         #手爪舵机有效角度

x_camera=0           #小球对于摄像头x坐标
y_camera=0           #小球对于摄像头y坐标
x_chassis=0          #小球对于底盘x坐标
y_chassis=0          #小球对于底盘y坐标
i=0


arm_angle_camera=0     #手臂和水平线角度
arm_ball=0             #臂舵机到球距离
elbow_angle_camera=0   #肘舵机于竖线的角度

chassis_high=70     #底座高度mm 90-20=70
arm_long=130        #手臂长度
elbow_hand_long=165 #手爪到肘长
chassis_ball=0      #底座到球距离



while(True):

    time.sleep(3000)
    print('进入')
    while(i<11):
        i=i+1
        clock.tick() # Track elapsed milliseconds between snapshots().
        img = sensor.snapshot() # 从感光芯片获得一张图像

        blobs = img.find_blobs([red_threshold])
        if blobs:
        #如果找到了目标颜色
            for b in blobs:
            #迭代找到的目标颜色区域
                # Draw a rect around the blob.
                img.draw_rectangle(b[0:4]) # rect
                #用矩形标记出目标颜色区域
                img.draw_cross(b[5], b[6]) # cx, cy
                #在目标颜色区域的中心画十字形标记
        Lm = b[2]#+b[3])/2
        length = K/Lm   #球到摄像头距离
        x_camera=x_camera+b[5]  #为了求x点在感兴趣区域的坐标x平均
        l_camera=l_camera+length #距离累加10次
        print('正在获取小球对于球的坐标,距离,x坐标:',length,int(length),b[5])
        #print(length)
        #print(b[5])
        time.sleep(30)
    x_camera=x_camera/10
    l_camera=l_camera/10
    x_chassis=math.sin((x_camera-80)*115/160)*l_camera
    x_chassis=math.fabs(x_chassis)
    y_chassis=math.cos((x_camera-80)*115/160)*l_camera+80
    #115是整个视野角度,平均到x方向每个像素就是115/160左边为负,右边为正,再乘以距离就是真实的偏移距离


    print('得到数据,距离平均值mm,x坐标平均值,x绝对坐标,y绝对坐标,角度')
    time.sleep(30)
    print(l_camera)
    print(x_camera)
    print(x_chassis)
    print(y_chassis)
    print((x_camera-80)*115/160)
    #break

    #进入抓球状态
    chassised_angle=math.atan(x_chassis/y_chassis) #得到相对弧度
    chassised_angle=chassised_angle*180/3.14   #转换成角度
    chassised_angle_goal=90-chassised_angle/0.34   #0.34=50/17  转换成舵机绝对角度
    print('底盘绝对角度是:')
    print( chassised_angle)

    #arm_angle_goal和elbow_angle_goal是目标角度
    chassis_ball=math.sqrt(x_chassis**2+y_chassis**2)
    arm_angle_goal=math.atan(chassis_high/chassis_ball)    #角度:底座——球 & ——水平线
    arm_ball=math.sqrt(chassis_ball*chassis_ball+chassis_high*chassis_high) #臂舵机到球距离
    #手臂和水平线角度余弦定理c*c = a*a + b*b - 2*a*b*cosC求反余弦减去臂舵机到球距离
    print( chassised_angle)
    arm_angle_goal=math.acos((arm_long**2 + arm_ball**2 - elbow_hand_long**2)/(2*arm_long*arm_ball))-arm_angle_goal
    arm_angle_goal= arm_angle_goal*180/math.pi #手臂和水平线角度

    elbow_angle_goal = math.acos((elbow_hand_long*elbow_hand_long + arm_long*arm_long - arm_ball*arm_ball )/(2 * elbow_hand_long * arm_long))*180/math.pi#臂肘之间的角度
    elbow_angle_goal = elbow_angle_goal-90+arm_angle_goal  #肘舵机于竖线的角度
    print('底座目标角度:')
    print(chassised_angle)
    print('手臂目标角度:')
    print(arm_angle_goal)
    print('肘部目标角度:')
    print(elbow_angle_goal)
    pass
    while(elbow_angle!=elbow_angle_goal or arm_angle!= arm_angle_goal or chassis_angle!= chassis_angle_goal or hand_angle!=min_hand_angle ):
        i=4
        while(i>=0):
            i=i-1
            if i==3 and hand_angle>min_hand_angle:
                servo.position(i,hand_angle)
                hand_angle-=1
            elif i==2 and elbow_angle <= elbow_angle_goal:
                pass
                servo.position(i,elbow_angle)
                elbow_angle+=1

            elif i==1 and arm_angle <= arm_angle_goal:
                pass
                servo.position(i,arm_angle)
                arm_angle+=1
            elif i==0 and chassis_angle > chassis_angle_goal:
                ervo.position(i,chassis_angle)
                arm_angle-=1
            elif i==0 and chassis_angle <= chassis_angle_goal:
                servo.position(i,chassis_angle)
                arm_angle+=1
    while(min_hand_angle<=hand_angle):
        hand_angle+=1
        servo.position(4,hand_angle)
        time.sleep(30)





    while(elbow_angle!=max_elbow_angle or arm_angle!=max_arm_angle or chassis_angle!=90):
        pass
        i=3
        while(i>=0):
        #底座,手臂,肘,手爪,对应0,1,2,3
            i=i-1
            if i==2 and elbow_angle<=max_elbow_angle:
                servo.position(i,elbow_angle)
                elbow_angle+=1
            elif i==1 and arm_angle<=max_arm_angle:
                    servo.position(i,arm_angle)
                    arm_angle+=1
            elif i==0 and chassis_angle!=90:
                if chassis_angle<90:
                    ervo.position(i,chassis_angle)
                    arm_angle+=1
                else:
                    ervo.position(i,chassis_angle)
                    arm_angle-=1

 for i in range(500):
        clock.tick()
        img = sensor.snapshot()
        img.binary([red_threshold])

        #image.binary(thresholds, invert=False)此函数将在thresholds内的
        #图像部分的全部像素变为1白,将在阈值外的部分全部像素变为0黑。invert将图像
        #的0 1(黑 白)进行反转,默认为false不反转。
        img.morph(kernel_size, kernel)
        #morph(size, kernel, mul=Auto, add=0),morph变换,mul根据图像对比度
        #进行调整,mul使图像每个像素乘mul;add根据明暗度调整,使得每个像素值加上add值。
        #如果不设置则不对morph变换后的图像进行处理。
        img.binary(thresholds)
        #利用binary函数对图像进行分割

        # Erode pixels with less than 2 neighbors using a 3x3 image kernel
        img.erode(1, threshold = 2)
        #侵蚀函数erode(size, threshold=Auto),去除边缘相邻处多余的点。threshold
        #用来设置去除相邻点的个数,threshold数值越大,被侵蚀掉的边缘点越多,边缘旁边
        #白色杂点少;数值越小,被侵蚀掉的边缘点越少,边缘旁边的白色杂点越多。
        print(clock.fps())

猜你喜欢

转载自blog.csdn.net/qq_42807924/article/details/82354781