HashMap的学习笔记

1. 相关数据结构

  • HashMap概括的讲就是数组+线性链表,首先回顾一下HashMap涉及到的三种数据结构。
  • 这里写图片描述

    1. 数组:一组连续的内存存储数据,根据下标的查找复杂度为O(1),根据给定的值查找复杂度为O(n)。(查找快,插入删除慢)。
    2. 线性链表:如果能直接定位,新增和删除只需要O(1)的复杂度,但是查找定位需要遍历,平均复杂度为O(logn)(查找慢,插入删除快)。
    3. 哈希表:在哈希表中进行添加,删除,查找等操作,性能十分之高,不考虑哈希冲突的情况下,仅需一次定位即可完成,时间复杂度为O(1)。
  • 哈希表的主干是数组,因为根据哈希函数得出索引后能够直接在数组上一次定位;但是如果发生哈希冲突(根据hash得到的地址已经被占用),则需要另外的解决方法,解决哈希冲突的方法一般是开放地址法以及链地址法。开放地址法是指冲突之后继续找下一块可用地址,而链地址法则是引入链表作为数组的子结构继续存储数据。


2. HashMap的结构

  • HashMap的主干是一个Entry数组。Entry是HashMap的基本组成单元,每一个Entry包含一个key-value键值对。数组是HashMap的主体,链表则是主要为了解决哈希冲突而存在的。
  • Entry是HashMap中的一个静态内部类。代码如下
static class Entry<K,V> implements Map.Entry<K,V> {
        final K key;
        V value;
        Entry<K,V> next;//存储指向下一个Entry的引用,单链表结构
        int hash;//对key的hashcode值进行hash运算后得到的值,存储在Entry,避免重复计算

        /**
         * Creates new entry.
         */
        Entry(int h, K k, V v, Entry<K,V> n) {
            value = v;
            next = n;
            key = k;
            hash = h;
        }
  • 整个HashMap的结构如下:
    这里写图片描述
  • 如果定位到的数组位置不含链表(当前entry的next指向null),那么对于查找,添加等操作很快,仅需一次寻址即可;如果定位到的数组包含链表,对于添加操作,其时间复杂度依然为O(1),因为最新的Entry会插入链表头部,只需要简单改变引用链即可,而对于查找操作来讲,此时就需要遍历链表,然后通过key对象的equals方法逐一比对查找。所以,性能考虑,HashMap中的链表出现越少,性能才会越好。

2. HashMap的构造器

  • HashMap的常规构造方法如下:
public HashMap(int initialCapacity, float loadFactor) {     //此处对传入的初始容量进行校验,最大不能超过MAXIMUM_CAPACITY = 1<<30(230)
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);

        this.loadFactor = loadFactor;
        threshold = initialCapacity;     
        init();//init方法在HashMap中没有实际实现,不过在其子类如 linkedHashMap中就会有对应实现
    }
  • 结合HashMap的构造方法,我们可以看到有两个参数可以影响HashMap的性能:初始容量(inital capacity,初始为16)负载系数(load facto,初始为0.75)。初始容量指定了初始table的大小,负载系数用来指定自动扩容的临界值。当entry的数量超过capacity*load_factor时,容器将自动扩容并重新哈希。对于插入元素较多的场景,将初始容量设大可以减少重新哈希的次数。

3. HashMap的get(Object key)

  • get(Object key)方法根据指定的key值返回对应的value,该方法调用了getEntry(Object key)得到相应的entry,然后返回entry.getValue()。因此getEntry()是算法的核心。源码如下:
final Entry<K,V> getEntry(Object key) {

        if (size == 0) {
            return null;
        }
        //通过key的hashcode值计算hash值
        int hash = (key == null) ? 0 : hash(key);
        //indexFor (hash&length-1) 获取最终数组索引,然后遍历链表,通过equals方法比对找出对应记录
        for (Entry<K,V> e = table[indexFor(hash, table.length)];
             e != null;
             e = e.next) {
            Object k;
            if (e.hash == hash && 
                ((k = e.key) == key || (key != null && key.equals(k))))
                return e;
        }
        return null;
    }
  • 算法思想是首先通过hash()函数得到对应bucket的下标,然后依次遍历冲突链表,通过key.equals(k)方法来判断是否是要找的那个entry。
    这里写图片描述

4. 关键:hashCode()与equals()

  • 将对向放入到HashMap或HashSet中时,有两个方法需要特别关心:hashCode()和equals()。hashCode()方法决定了对象会被放到哪个bucket里,当多个对象的哈希值冲突时,equals()方法决定了这些对象是否是“同一个对象”。所以,如果要将自定义的对象放入到HashMap或HashSet中,需要@Override hashCode()和equals()方法。

5. HashMap的put(Object key,Object value)

  • 当程序试图将一个key-value对放入HashMap中时,程序首先根据该 key 的 hashCode() 返回值决定该 Entry 的存储位置:如果两个 Entry 的 key 的 hashCode() 返回值相同,那它们的存储位置相同(数组下标相同)。如果这两个 Entry 的 key 通过 equals 比较返回 true,新添加 Entry 的 value 将覆盖集合中原有 Entry 的 value,但key不会覆盖。如果这两个 Entry 的 key 通过 equals 比较返回 false,新添加的 Entry 将与集合中原有 Entry 形成 Entry 链,而且新添加的 Entry 位于 Entry 链的头部(头插法)。源码如下:
public V put(K key, V value) {
        //如果table数组为空数组{},进行数组填充(为table分配实际内存空间),入参为threshold,此时threshold为initialCapacity 默认是1<<4(24=16)
        if (table == EMPTY_TABLE) {
            inflateTable(threshold);
        }
       //如果key为null,存储位置为table[0]或table[0]的冲突链上
        if (key == null)
            return putForNullKey(value);
        int hash = hash(key);//对key的hashcode进一步计算,确保散列均匀
        int i = indexFor(hash, table.length);//获取在table中的实际位置
        for (Entry<K,V> e = table[i]; e != null; e = e.next) {
        //如果该对应数据已存在,执行覆盖操作。用新value替换旧value,并返回旧value
            Object k;
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue;
            }
        }
        modCount++;//保证并发访问时,若HashMap内部结构发生变化,快速响应失败
        addEntry(hash, key, value, i);//新增一个entry
        return null;
    }

4. HashMap的扩容(resize)

  • 当HashMap中的元素越来越多的时候,hash冲突的几率也就越来越高,因为数组的长度是固定的。所以为了提高查询的效率,就要对HashMap的数组进行扩容,数组扩容这个操作也会出现在ArrayList中,这是一个常用的操作,而在HashMap数组扩容之后,最消耗性能的点就出现了:原数组中的数据必须重新计算其在新数组中的位置,并放进去,这就是resize。
  • 那么HashMap什么时候进行扩容呢?当HashMap中的元素个数超过数组大小*loadFactor时,就会进行数组扩容,loadFactor的默认值为0.75,这是一个折中的取值。也就是说,默认情况下,数组大小为16,那么当HashMap中元素个数超过16*0.75=12的时候,就把数组的大小扩展为 2*16=32,即扩大一倍,然后重新计算每个元素在数组中的位置,而这是一个非常消耗性能的操作,所以如果我们已经预知HashMap中元素的个数,那么预设元素的个数能够有效的提高HashMap的性能。
void resize(int newCapacity) {
        Entry[] oldTable = table;
        int oldCapacity = oldTable.length;
        if (oldCapacity == MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return;
        }

        Entry[] newTable = new Entry[newCapacity];
        transfer(newTable, initHashSeedAsNeeded(newCapacity));
        //transfer方法逐个遍历链表,重新计算索引位置,将老数组数据复制到新数组中去
        table = newTable;
        threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
    }

5. HashMap的性能参数

  • HashMap 包含如下几个构造器:
    1. HashMap():构建一个初始容量为 16,负载因子为 0.75 的 HashMap
    2. HashMap(int initialCapacity):构建一个初始容量为 initialCapacity,负载因子为 0.75 的 HashMap。
    3. HashMap(int initialCapacity, float loadFactor):以指定初始容量、指定的负载因子创建一个 HashMap。
  • initialCapacity:HashMap的最大容量,即为底层数组的长度。
  • loadFactor:负载因子loadFactor定义为:散列表的实际元素数目(n)/ 散列表的容量(m)。
  • 负载因子衡量的是一个散列表的空间的使用程度,负载因子越大表示散列表的装填程度越高,反之愈小。对于使用链表法的散列表来说,查找一个元素的平均时间是O(1+a),因此如果负载因子越大,对空间的利用更充分,然而后果是查找效率的降低;如果负载因子太小,那么散列表的数据将过于稀疏,对空间造成严重浪费。
  • HashMap的实现中,通过threshold字段来判断HashMap的最大容量:
    threshold = (int)(capacity * loadFactor)
    结合负载因子的定义公式可知,threshold就是在此loadFactor和capacity对应下允许的最大元素数目,超过这个数目就重新resize,以降低实际的负载因子。默认的的负载因子0.75是对空间和时间效率的一个平衡选择。当容量超出此最大容量时, resize后的HashMap容量是原来容量的两倍

6. HashMap的Fail-Fast机制

  • java.util.HashMap不是线程安全的,因此如果在使用迭代器的过程中有其他线程修改了map,那么将抛出ConcurrentModificationException,这就是所谓fail-fast策略。
  • 这一策略在源码中的实现是通过modCount域,modCount顾名思义就是修改次数,对HashMap内容的修改都将增加这个值,那么在迭代器初始化过程中会将这个值赋给迭代器的expectedModCount。
HashIterator() {
    expectedModCount = modCount;
    if (size > 0) { // advance to first entry
    Entry[] t = table;
    while (index < t.length && (next = t[index++]) == null)
        ;
    }
}
  • 在迭代过程中,判断modCount跟expectedModCount是否相等,如果不相等就表示已经有其他线程修改了Map (注意到modCount声明为volatile,保证线程之间修改的可见性。
final Entry<K,V> nextEntry() {   
    if (modCount != expectedModCount)   
        throw new ConcurrentModificationException();
  • 一般来说,存在非同步的并发修改时,快速失败迭代器尽最大努力抛出 ConcurrentModificationException,迭代器的快速失败行为应该仅用于检测程序错误。

7. HashMap和Hashtable

  • HashMap不是线程安全的;HashTable是线程安全的,其线程安全是通过Sychronize实现。
  • 由于上述原因,HashMap效率高于HashTable
  • HashMap的键可以为null,HashTable不可以
  • 多线程环境下,通常也不是用HashTable,因为效率低。HashMap配合Collections工具类使用实现线程安全。同时还有ConcurrentHashMap可以选择,该类的线程安全是通过Lock的方式实现的,所以效率高于Hashtable。

猜你喜欢

转载自blog.csdn.net/huanglu20125/article/details/79323101