复习一 矩阵的含义

基看成是线性空间里的坐标系。“选定一组基”就是说在线性空间里选定一个坐标系。

矩阵的定义完善如下:
“矩阵是线性空间中的线性变换的一个描述。在一个线性空间中,只要我们选定一组基,那么对于任何一个线性变换,都能够用一个确定的矩阵来加以描述。”

理解这句话的关键,在于把“线性变换”与“线性变换的一个描述”区别开。

比如有一头猪,你打算给它拍照片,只要你给照相机选定了一个镜头位置,那么就可以给这头猪拍一张照片。这个照片可以看成是这头猪的一个描述,

但只是一个片面的的描述,因为换一个镜头位置给这头猪拍照,能得到一张不同的照片,也是这头猪的另一个片面的描述。

所有这样照出来的照片都是这同一头猪的描述,但是又都不是这头猪本身。

同样的,对于一个线性变换,只要你选定一组基,那么就可以找到一个矩阵来描述这个线性变换。

换一组基,就得到一个不同的矩阵。所有这些矩阵都是这同一个线性变换的描述,但又都不是线性变换本身。

但是这样的话,问题就来了如果你给我两张猪的照片,我怎么知道这两张照片上的是同一头猪呢?

同样的,你给我两个矩阵,我怎么知道这两个矩阵是描述的同一个线性变换呢?

好在,我们可以找到同一个线性变换的矩阵兄弟们的一个性质,那就是:

若矩阵A与B是同一个线性变换的两个不同的描述(之所以会不同,是因为选定了不同的基,也就是选定了不同的坐标系),则一定能找到一个可逆(非奇异,即 |P|≠0 )矩阵P,使得A、B之间满足这样的关系:

A = P-1 *B *P

这就是相似矩阵的定义。所谓相似矩阵,就是同一个线性变换的不同的描述矩阵。按照这个定义,同一头猪的不同角度的照片也可以成为相似照片。

矩阵P其实就是A矩阵的基与B矩阵的基这两组基之间的一个变换关系。一族相似矩阵都是同一个线性变换的描述。

同一个线性变换的不同矩阵描述,从实际运算性质来看并不是不分好环的。有些描述矩阵就比其他的矩阵性质好得多。

同一头猪的照片也有美丑之分嘛。所以矩阵的相似变换可以把一个比较丑的矩阵变成一个比较美的矩阵,而保证这两个矩阵都是描述了同一个线性变换。

矩阵不仅可以作为线性变换的描述,而且可以作为一组基的描述。

而作为变换的矩阵,不但可以把线性空间中的一个点给变换到另一个点去,而且也能够把线性空间中的一个坐标系(基)变换到另一个坐标系(基)去。而且,变换点与变换坐标系,具有异曲同工的效果

1. 首先有空间,空间可以容纳对象运动的。一种空间对应一类对象。
2. 有一种空间叫线性空间,线性空间是容纳向量对象运动的。
3. 运动是瞬时的,因此也被称为变换。
4. 矩阵是线性空间中运动(变换)的描述。
5. 矩阵与向量相乘,就是实施运动(变换)的过程。
6. 同一个变换,在不同的坐标系下表现为不同的矩阵,但是它们的本质是一样的,所以本征值(特征值?)相同。

(一矩阵A作用于一向量a,结果只相当与该向量乘以一常数λ。即A*a=λa,则a为该矩阵A的特征向量,λ为该矩阵A的特征值。 
  本征值和本征向量为量子力学术语,对矩阵来讲与特征值和特征向量定义一样。但本征值不仅限于矩阵,对微分算子也有意义。”)

矩阵描述了一个坐标系。之所以矩阵又是运动,又是坐标系,那是因为——“运动等价于坐标系变换”。

准确的说法是:“对象的变换等价于坐标系的变换”。或者:“固定坐标系下一个对象的变换等价于固定对象所处的坐标系变换。”   “运动是相对的。” 

把矩阵看成是运动描述,矩阵与向量相乘就是使向量(点)运动的过程。

    Ma = b的意思是:

    “向量a经过矩阵M所描述的变换,变成了向量b。”

    从第二个方式来看,矩阵M描述了一个坐标系,姑且也称之为M。那么:

    Ma = b的意思是:

    “有一个向量,它在坐标系M的度量下得到的度量结果向量为a,那么它在坐标系 I(单位矩阵)的度量下,这个向量的度量结果是b。”

“对坐标系施加变换的方法,就是让表示那个坐标系的矩阵与表示那个变化的矩阵相乘。”

再一次的,矩阵的乘法变成了运动的施加。只不过,被施加运动的不再是向量,而是另一个坐标系。

把M当成N的前缀,当成N的环境描述,那么就是说,在M坐标系度量下,有另一个坐标系N。这个坐标系N如果放在I坐标系中度量,其结果为坐标系MxN。

回到分析的概念上,一个向量总可以表示为若干个同阶向量之和,这就是向量的分析。但是并不是所有的这些分析都具有相同的价值。

在某种运算中,某种特别的分析能够提供特别优越的性,从而大大简化运算。比如在大多数情况下,将一个向量表示成一组单位正交基向量的和,

就能够在计算中获得特别的便利。面对某个问题,寻找一个最优越的分析形式,把要研究的对象合理地表示成具有特殊性质的基对象与实数系数之积的和,

这是分析的重要步骤,也是成功的关键。在这种表示式中,系数称为坐标。

    经典的方法都是以找到一组性质优良的基为开端的,例如:
    傅立叶分析以正交函数系为基,因此具有优良性质,自1904年以来取代幂函数系,成为分析主流。
    在曲线和曲面拟合中,正交多项式集构成了最佳基函数。 拉格朗日插值多项式具有一个特别的性质,即在本结点上为1,在其他结点上为0。
    有限元中的形函数类似拉氏插值多项式。
    结构动力学中的主振型迭加法,也是以相互正交的主振型为基,对多质点体系位移进行分析的。
    举两个例子:说到采样,大家的第一反应肯定是一个词“2倍”(采样定理)。学得比较扎实的,可能还会把为什么是2倍解释清楚。

但我对采样的理解是:采样实际上是在进行正交分解,采样值不过是在一组正交基下分解的系数。如果原信号属于该组正交基所张成的线性子空间,

那么该信号就能无失真的恢复(满足采样定理)。学过信号处理的朋友,你知道这组正交基是什么吗?:) 第二个例子是关于为什么傅里叶变换在线性系统理论中如此重要?

答案可能五花八门,但我认为我的理解是比较深入的:原因是傅里叶基是所有线性时不变算子的特征向量。

    特征向量确实有很明确的几何意义,矩阵(既然讨论特征向量的问题,当然是方阵,这里不讨论广义特征向量的概念,就是一般的特征向量)乘以一个向量的结果仍是同维数的一个向量,

因此,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量,那么变换的效果是什么呢?这当然与方阵的构造有密切关系,比如可以取适当的二维方阵,

使得这个变换的效果就是将平面上的二维向量逆时针旋转30度,这时我们可以问一个问题,有没有向量在这个变换下不改变方向呢?

可以想一下,除了零向量,没有其他向量可以在平面上旋转30度而不改变方向的,所以这个变换对应的矩阵(或者说这个变换自身)没有特征向量(注意:特征向量不能是零向量),

所以一个变换的特征向量是这样一种向量,它经过这种特定的变换后保持方向不变,只是进行长度上的伸缩而已(再想想特征向量的原始定义Ax=cx,你就恍然大悟了,看到了吗?

cx是方阵A对向量x进行变换后的结果,但显然cx和x的方向相同),而且x是特征向量的话,ax也是特征向量(a是标量且不为零),所以所谓的特征向量不是一个向量而是一个向量族,

另外,特征值只不过反映了特征向量在变换时的伸缩倍数而已,对一个变换而言,特征向量指明的方向才是很重要的,特征值不是那么重要,虽然我们求这两个量时先求出特征值,但特征向量才是更本质的东西

 值得注意的是,我们说的特征向量是一类向量,因为任意一个特征向量随便乘以一个标量结果肯定也满足上述方程,当然这两个向量都可以看成是同一特征向量,并且它们也对应于同一个特征值。

我们试图构造一个这样的变换矩阵A:它把向量变换到一个值域空间,这个值域空间的基是正交的;不仅如此,还要求任对于意一个基v都有 clip_image018 的形式,µ是原来空间的一个已知基。

这样我们就能把复杂的向量问题转换到一个异常简单的空间中去。如果µ的数量不等于v,那么用AT A取代A,可以变为一个对称且半正定矩阵,它的特征向量正是要求的基v!

再次说明,矩阵不等于变换,把矩阵看成变换只是提供一个理解变换矩阵的方法。或者,我们可以认为,矩阵只是变换的一种变现形式。

猜你喜欢

转载自www.cnblogs.com/gaobw/p/9591051.html
今日推荐