用TensorFlow搭建CNN卷积神经网络

""" Convolutional Neural Network.

Build and train a convolutional neural network with TensorFlow.
This example is using the MNIST database of handwritten digits
(http://yann.lecun.com/exdb/mnist/)

This example is using TensorFlow layers API, see 'convolutional_network_raw' 
example for a raw implementation with variables.

Author: Aymeric Damien
Project: https://github.com/aymericdamien/TensorFlow-Examples/
"""
from __future__ import division, print_function, absolute_import

# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=False)

import tensorflow as tf

# Training Parameters
learning_rate = 0.001
num_steps = 2000
batch_size = 128

# Network Parameters
num_input = 784 # MNIST data input (img shape: 28*28)
num_classes = 10 # MNIST total classes (0-9 digits)
dropout = 0.25 # Dropout, probability to drop a unit


# Create the neural network
def conv_net(x_dict, n_classes, dropout, reuse, is_training):
    # Define a scope for reusing the variables
    with tf.variable_scope('ConvNet', reuse=reuse):
        # TF Estimator input is a dict, in case of multiple inputs
        x = x_dict['images']

        # MNIST data input is a 1-D vector of 784 features (28*28 pixels)
        # Reshape to match picture format [Height x Width x Channel]
        # Tensor input become 4-D: [Batch Size, Height, Width, Channel]
        x = tf.reshape(x, shape=[-1, 28, 28, 1])

        # Convolution Layer with 32 filters and a kernel size of 5
        conv1 = tf.layers.conv2d(x, 32, 5, activation=tf.nn.relu)
        # Max Pooling (down-sampling) with strides of 2 and kernel size of 2
        conv1 = tf.layers.max_pooling2d(conv1, 2, 2)

        # Convolution Layer with 64 filters and a kernel size of 3
        conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu)
        # Max Pooling (down-sampling) with strides of 2 and kernel size of 2
        conv2 = tf.layers.max_pooling2d(conv2, 2, 2)

        # Flatten the data to a 1-D vector for the fully connected layer
        fc1 = tf.contrib.layers.flatten(conv2)

        # Fully connected layer (in tf contrib folder for now)
        fc1 = tf.layers.dense(fc1, 1024)
        # Apply Dropout (if is_training is False, dropout is not applied)
        fc1 = tf.layers.dropout(fc1, rate=dropout, training=is_training)

        # Output layer, class prediction
        out = tf.layers.dense(fc1, n_classes)

    return out


# Define the model function (following TF Estimator Template)
def model_fn(features, labels, mode):
    # Build the neural network
    # Because Dropout have different behavior at training and prediction time, we
    # need to create 2 distinct computation graphs that still share the same weights.
    logits_train = conv_net(features, num_classes, dropout, reuse=False,
                            is_training=True)
    logits_test = conv_net(features, num_classes, dropout, reuse=True,
                           is_training=False)

    # Predictions
    pred_classes = tf.argmax(logits_test, axis=1)
    pred_probas = tf.nn.softmax(logits_test)

    # If prediction mode, early return
    if mode == tf.estimator.ModeKeys.PREDICT:
        return tf.estimator.EstimatorSpec(mode, predictions=pred_classes)

        # Define loss and optimizer
    loss_op = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits=logits_train, labels=tf.cast(labels, dtype=tf.int32)))
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
    train_op = optimizer.minimize(loss_op,
                                  global_step=tf.train.get_global_step())

    # Evaluate the accuracy of the model
    acc_op = tf.metrics.accuracy(labels=labels, predictions=pred_classes)

    # TF Estimators requires to return a EstimatorSpec, that specify
    # the different ops for training, evaluating, ...
    estim_specs = tf.estimator.EstimatorSpec(
        mode=mode,
        predictions=pred_classes,
        loss=loss_op,
        train_op=train_op,
        eval_metric_ops={'accuracy': acc_op})

    return estim_specs

# Build the Estimator
model = tf.estimator.Estimator(model_fn)

# Define the input function for training
input_fn = tf.estimator.inputs.numpy_input_fn(
    x={'images': mnist.train.images}, y=mnist.train.labels,
    batch_size=batch_size, num_epochs=None, shuffle=True)
# Train the Model
model.train(input_fn, steps=num_steps)

# Evaluate the Model
# Define the input function for evaluating
input_fn = tf.estimator.inputs.numpy_input_fn(
    x={'images': mnist.test.images}, y=mnist.test.labels,
    batch_size=batch_size, shuffle=False)
# Use the Estimator 'evaluate' method
e = model.evaluate(input_fn)

print("Testing Accuracy:", e['accuracy'])
以上示例代码使用TensorFlow框架用手写数字数据集MNIST来训练CNN网络,运行环境为Python3.6、TensorFlow1.7。用TensorFlow搭建CNN网络过程总结如下:

step1.超参数设定。如学习率、总训练步长、小批量数据大小。

         神经网络参数设定。如输入层、输出层的神经单元个数、神经单元弃权率。

step2.定义神经网络前向传播过程函数。

step3.定义model_fn函数。该函数返回一个特定了一些参数的estimator。函数定义详见TensorFlow API。

step4.定义模型。该模型由tf.estimator.Estimator(model_fn)建立。

step5.定义input_fn函数。函数定义详见TensorFlow API。

step6.训练模型。

step7.定义input_fn函数。
step8.评估模型

猜你喜欢

转载自blog.csdn.net/qq_30683995/article/details/80167202
今日推荐