TensorFlow学习过程记录 (四) -- MNIST进阶

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/weixin_35737303/article/details/80395009

前段时间学习了中文社区的新手文档,然后查看了不少博客及论文。由于是完全没接触过AI学习这一块,所以很多地方理解起来比较吃力,特别是很多算法比较难理解,或是理解之后无法实现知识点的拼接。虽然这样,还是稍微有了一些些皮毛的了解,今天接着前面的只是学习,然后慢慢理解之后再返回来查看浅显一些的东西应该能够做到“深入浅出”,然后有所收获。

1. 加载数据集

和前面一样,使用下面的代码加载数据集:

from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("MNIST_data", one_hot=True)

这里,mnist是一个轻量级的类。它以Numpy数组的形式存储着训练、校验和测试数据集。同时提供了一个函数,用于在迭代中获得minibatch,后面将会用到。

2. 运行TensorFlow的InteractiveSession

Tensorflow依赖于一个高效的C++后端来进行计算。与后端的这个连接叫做session。一般而言,使用TensorFlow程序的流程是先创建一个图,然后在session中启动它。

这里,我们使用更加方便的InteractiveSession类。通过它,你可以更加灵活地构建代码。它能让你在运行图的时候,插入一些计算图,这些计算图是由某些操作(operations)构成的。这对于工作在交互式环境中的人们来说非常便利,比如使用IPython。如果你没有使用InteractiveSession,那么你需要在启动session之前构建整个计算图,然后启动该计算图。(计算图和启动计算图在文章构建图中已经介绍过)

import tensorflow as tf
sess = tf.InteractiveSession()

2.1 计算图

为了在Python中进行高效的数值计算,我们通常会使用像NumPy一类的库,将一些诸如矩阵乘法的耗时操作在Python环境的外部来计算,这些计算通常会通过其它语言并用更为高效的代码来实现。

但遗憾的是,每一个操作切换回Python环境时仍需要不小的开销。如果你想在GPU或者分布式环境中计算时,这一开销更加可怖,这一开销主要可能是用来进行数据迁移。

TensorFlow也是在Python的外部完成其主要工作,但是进行了改进以避免这种开销。其并没有采用在Python外部独立运行某个耗时操作的方式,而是先描述一个交互操作图,然后完全将其运行在Python外部。这与Theano或Torch的做法类似。

因此Python代码的目的是用来构建这个可以在外部运行的计算图,以及安排计算图的哪一部分应该被运行。
(计算图和启动计算图在文章构建图中已经介绍过)

3. 构建Softmax 回归模型

在这一节中我们将建立一个拥有一个线性层的softmax回归模型。在下一节,我们会将其扩展为一个拥有多层卷积网络的softmax回归模型。

3.1 占位符

我们通过为输入图像和目标输出类别创建节点,来开始构建计算图。

x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10])

这里的xy并不是特定的值,相反,他们都只是一个占位符,可以在TensorFlow运行某一计算时根据该占位符输入具体的值。
输入图片x是一个2维的浮点数张量。这里,分配给它的shape为[None, 784],其中784是一张展平的MNIST图片的维度。None表示其值大小不定,在这里作为第一个维度值,用以指代batch的大小,意即x的数量不定。输出类别值y_也是一个2维张量,其中每一行为一个10维的one-hot向量,用于代表对应某一MNIST图片的类别。

虽然placeholder的shape参数是可选的,但有了它,TensorFlow能够自动捕捉因数据维度不一致导致的错误。

3.2 变量

我们现在为模型定义权重W和偏置b。可以将它们当作额外的输入量,但是TensorFlow有一个更好的处理方式:变量。一个变量代表着TensorFlow计算图中的一个值,能够在计算过程中使用,甚至进行修改。在机器学习的应用过程中,模型参数一般用Variable来表示。

W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))

我们在调用tf.Variable的时候传入初始值。在这个例子里,我们把W和b都初始化为零向量。W是一个784x10的矩阵(因为我们有784个特征和10个输出值)。b是一个10维的向量(因为我们有10个分类)。
变量需要通过seesion初始化后,才能在session中使用。这一初始化步骤为,为初始值指定具体值(本例当中是全为零),并将其分配给每个变量,可以一次性为所有变量完成此操作。

sess.run(tf.initialize_all_variables())

4. 类别预测与损失函数

现在实现回归模型。按照回归函数(见上一篇MNIST入门或对回归的简单介绍)我们把向量化后的图片x和权重矩阵W相乘,加上偏置b,然后计算每个分类的softmax概率值。

y = tf.nn.softmax(tf.matmul(x,W) + b)

可以很容易的为训练过程指定最小化误差用的损失函数,我们的损失函数是目标类别和预测类别之间的交叉熵。

cross_entropy = -tf.reduce_sum(y_*tf.log(y))

注意,tf.reduce_sum把minibatch里的每张图片的交叉熵值都加起来了。我们计算的交叉熵是指整个minibatch的。

4. 训练模型

我们已经定义好模型和训练用的损失函数,那么用TensorFlow进行训练就很简单了。因为TensorFlow知道整个计算图,它可以使用自动微分法找到对于各个变量的损失的梯度值。TensorFlow有大量内置的优化算法 。这个例子中,我们用最速下降法让交叉熵下降,步长为0.01.

train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)

这一行代码实际上是用来往计算图上添加一个新操作,其中包括计算梯度,计算每个参数的步长变化,并且计算出新的参数值。
返回的train_step操作对象,在运行时会使用梯度下降来更新参数。因此,整个模型的训练可以通过反复地运行train_step来完成。

for i in range(1000):
  batch = mnist.train.next_batch(50)
  train_step.run(feed_dict={x: batch[0], y_: batch[1]})

每一步迭代,我们都会加载50个训练样本,然后执行一次train_step,并通过feed_dictxy_张量占位符用训练数据替代。
注意,在计算图中,可以用feed_dict来替代任何张量,并不仅限于替换占位符

5. 评估模型

先找出那些预测正确的标签。tf.argmax 是一个非常有用的函数,它能给出某个tensor对象在某一维上的其数据最大值所在的索引值。由于标签向量是由0,1组成,因此最大值1所在的索引位置就是类别标签,比如tf.argmax(y,1)返回的是模型对于任一输入x预测到的标签值,而 tf.argmax(y_,1) 代表正确的标签,我们可以用 tf.equal 来检测我们的预测是否真实标签匹配(索引位置一样表示匹配)。(和入门那篇文章一样。)

correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))

这里返回一个布尔数组。为了计算我们分类的准确率,我们将布尔值转换为浮点数来代表对、错,然后取平均值。例如:[True, False, True, True]变为[1,0,1,1],计算出平均值为0.75。

accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

最后,我们可以计算出在测试数据上的准确率,大概是91%。

print accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels})

输出结果:
这里写图片描述
忽略警告信息,该训练的准确率大概是91%。

这篇文章到目前为止是在重复入门文章的内容,下一篇文章会继续深入学习如何构建一个多层卷积网络

猜你喜欢

转载自blog.csdn.net/weixin_35737303/article/details/80395009
今日推荐