(C#)A*算法伪代码及源码

A*   AStar   A星
2d游戏,或者网格游戏中
Cost f 总消耗
Cost g 距离起点的消耗
Cost h 距离终点的消耗
默认消耗,直走消耗10,斜着走消耗14

开启列表
关闭列表

父节点
//
开启列表
关闭列表
开始循环(开启列表有值)
 当前点 = 开启列表中最小的f_Cost 
 把当前点从开启列表删除
 把当前点添加到关闭列表
 
 If当前点是终点,跳出循环
 
点开一个红点,周围的点会得到一个新的花费
循环周围的点
 这个点不能走或者在关闭列表中,跳过这个点
 
如果新花费小于原来的花费,
 替换成新的花费
 将这个点(周围的点里面的)的父节点设置为当前点(新点开的红点)
这个点不再开启列表中
 这个点添加到开启列表中
  直接替换成新的花费
  将这个点(周围的点里面的)的父节点设置为当前点(新点开的红点)

源码:

using UnityEngine;
using System.Collections;

public class Node
{
    /*逻辑中用的*/
    public int gCost;
    public int hCost;
    public int fCost
    {
        get { return gCost + hCost; }
    }
    public Node parent;

    /*在Unity当中用的*/
    public bool canWalk;
    //网格的下标
    public int gridX;
    public int gridY;
    //节点的位置
    public Vector3 worldPos;

    public Node(bool _canWalk, Vector3 position, int x, int y)
    {
        canWalk = _canWalk;
        worldPos = position;
        gridX = x;
        gridY = y;
    }
}

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class Grid : MonoBehaviour
{
    //存放点节点的数组
    public Node[,] grid;

    //网格的大小
    public Vector2 gridSize;
    //节点的大小
    public float nodeRadius;
    public float nodeDiameter;
    //一个层,代表可不可以通过
    public LayerMask cantLayer;

    //x和y方向上各有多少个格子
    public int gridContX;
    public int gridContY;

    //起点
    public Transform start;

    //用来保存路径的列表
    public List<Node> path = new List<Node>();


    void Start ()
    {
        cantLayer = LayerMask.GetMask("CantWalk");
        nodeDiameter = nodeRadius * 2;
        //gridContX = (int)(gridSize.x / nodeDiameter);
        gridContX = Mathf.RoundToInt(gridSize.x / nodeDiameter);
        gridContY = Mathf.RoundToInt(gridSize.y / nodeDiameter);

        grid = new Node[gridContX, gridContY];
        CreatGrid();
    }
	
	void Update ()
    {
	
	}
    //创建格子
    void CreatGrid()
    {
        //网格起点
        Vector3 startPoint = transform.position - gridSize.y / 2 * Vector3.forward - gridSize.x / 2 * Vector3.right;

        for (int i = 0; i < gridContX; i++)
        {
            for (int j = 0; j < gridContY; j++)
            {
                Vector3 worldPos = startPoint + Vector3.right * (nodeDiameter * i + nodeRadius) + Vector3.forward * (nodeDiameter * j + nodeRadius);
                //检测有没有碰到不能走的层上的物体
                bool canwalk = !Physics.CheckSphere(worldPos, nodeRadius, cantLayer);

                grid[i, j] = new Node(canwalk, worldPos, i, j);
            }
        }
    }

    //Unity中的辅助类
    void OnDrawGizmos()
    {
        if (grid == null)
        {
            return;
        }
        foreach (Node node in grid)
        {
            if (node.canWalk)
            {
                Gizmos.color = Color.yellow;
                Gizmos.DrawCube(node.worldPos, (nodeDiameter - 0.02f) * new Vector3(1, 0.2f, 1));
            }
            else
            {
                Gizmos.color = Color.red;
                Gizmos.DrawCube(node.worldPos, (nodeDiameter - 0.02f) * new Vector3(1, 0.2f, 1));
            }
        }

        //画出起点的位置
        Node startNode = FindWithPosition(start.position);
        if (startNode.canWalk)
        {
            Gizmos.color = Color.black;
            Gizmos.DrawCube(startNode.worldPos, (nodeDiameter - 0.02f) * new Vector3(1, 0.2f, 1));
        }


        //画路径
        if(path != null)
        {
            foreach (var node in path)
            {
                Gizmos.color = Color.blue;
                Gizmos.DrawCube(node.worldPos, (nodeDiameter - 0.02f) * new Vector3(1, 0.2f, 1));
            }
        }
    }

    //通过位置得到在哪一个格子
    public Node FindWithPosition(Vector3 position)
    {
        //在x方向的占比
        float percentX = (position.x + gridSize.x / 2) / gridSize.x;
        float percentY = (position.z + gridSize.y / 2) / gridSize.y;

        //算出在哪个格子
        int x = Mathf.RoundToInt((gridContX - 1) * percentX);
        int y = Mathf.RoundToInt((gridContY - 1) * percentY);

        return grid[x, y];
    }

    //通过一个点寻找周围的点
    public List<Node> GetAroundNode(Node node)
    {
        List<Node> aroundNodes = new List<Node>();

        for (int i = -1; i <= 1; i++)
        {
            for (int j = -1; j <= 1; j++)
            {
                //传进来的点的下标  跳过
                if(i == 0 && j == 0)
                {
                    continue;
                }

                int tempX = node.gridX + i;
                int tempY = node.gridY + j;

                //判断有没有越界
                if (tempX >= 0 && tempX < gridContX && tempY >= 0 && tempY < gridContY)
                {
                    aroundNodes.Add(grid[tempX, tempY]);
                }
            }
        }

        return aroundNodes;
    }
}

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class FindPath_AStar : MonoBehaviour
{
    public Transform startPoint;
    public Transform endPoint;


    private Grid grid;
	// Use this for initialization
	void Start ()
    {
        grid = GetComponent<Grid>();

    }
	
	void Update ()
    {
        FindPath(startPoint.position, endPoint.position);

    }

    //
    void FindPath(Vector3 startPos, Vector3 endPos)
    {
        //开启列表
        List<Node> opentSet = new List<Node>();
        //关闭列表
        List<Node> closeSet = new List<Node>();

        //起点格子
        Node startNode = grid.FindWithPosition(startPos);
        //终点格子
        Node endNode = grid.FindWithPosition(endPos);

        //把起点加入开启列表
        opentSet.Add(startNode);

        //开始循环(开启列表有值)
        while (opentSet.Count > 0)
        {
            //当前点
            Node currentNode = opentSet[0];
            //开启列表中最小的f_Cost
            for (int i = 0; i < opentSet.Count; i++)
            {
                //如果总花费最小,并且离目标点最近
                if (opentSet[i].fCost <= currentNode.fCost && opentSet[i].hCost < currentNode.fCost)
                {
                    currentNode = opentSet[i];
                }
            }

            //把这个点 点红
            //把当前点从开启列表删除
            opentSet.Remove(currentNode);
            //把当前点添加到关闭列表
            closeSet.Add(currentNode);

            //If当前点是终点,跳出循环
            if (currentNode == endNode)
            {
                GetPath(startNode, endNode);
                return;
            }

            //周围的点
            List<Node> around = grid.GetAroundNode(currentNode);
            //循环周围的点
            foreach (Node node in around)
            {
                //这个点不能走或者在关闭列表中,跳过这个点
                if (!node.canWalk || closeSet.Contains(node))
                {
                    continue;
                }
                //点开一个红点,周围的点会得到一个新的花费g
                int newCost_g = currentNode.gCost + GetCost(currentNode, node);
                //比较新花费和原来的花费,谁更小(谁离我们起点近) || 这个点不再开启列表中
                if (newCost_g < node.gCost || !opentSet.Contains(node))
                {
                    //替换成新的花费
                    node.gCost = newCost_g;
                    node.hCost = GetCost(node, endNode);
                    //将这个点(周围的点里面的)的父节点设置为当前点(新点开的红点)
                    node.parent = currentNode;

                    //这个点不再开启列表中
                    if (!opentSet.Contains(node))
                    {
                        opentSet.Add(node);
                    }
                }
            }
        }
    }

    //计算花费
    int GetCost(Node a, Node b)
    {
        //等到两点之间的一个距离(x方向和y方向)
        int coutX = Mathf.Abs(a.gridX - b.gridX);
        int coutY = Mathf.Abs(a.gridY - b.gridY);

        if(coutX > coutY)
        {
            return (coutX - coutY) * 10 + coutY * 14;
        }
        else
        {
            return (coutY - coutX) * 10 + coutX * 14;
        }
    }


    //得到路径
    void GetPath(Node startNode, Node endNode)
    {
        List<Node> path = new List<Node>();
        Node temp = endNode;
        while(temp != startNode)
        {
            path.Add(temp);
            temp = temp.parent;
        }
        //列表转置
        path.Reverse();
        grid.path = path;
    }
}


猜你喜欢

转载自blog.csdn.net/GottaYiWanLiu/article/details/54881256