sharding-jdbc系列之分布式ID(十一)

sharding-jdbc系列之分布式ID(十一)

背景

在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识。如在美团点评的金融、支付、餐饮、酒店、猫眼电影等产品的系统中,数据日渐增长,对数据分库分表后需要有一个唯一ID来标识一条数据或消息,数据库的自增ID显然不能满足需求;特别一点的如订单、骑手、优惠券也都需要有唯一ID做标识。此时一个能够生成全局唯一ID的系统是非常必要的。概括下来,那业务系统对ID号的要求有哪些呢?

  1. 全局唯一性:不能出现重复的ID号,既然是唯一标识,这是最基本的要求。
  2. 趋势递增:在MySQL InnoDB引擎中使用的是聚集索引,由于多数RDBMS使用B-tree的数据结构来存储索引数据,在主键的选择上面我们应该尽量使用有序的主键保证写入性能。
  3. 单调递增:保证下一个ID一定大于上一个ID,例如事务版本号、IM增量消息、排序等特殊需求。
  4. 信息安全:如果ID是连续的,恶意用户的扒取工作就非常容易做了,直接按照顺序下载指定URL即可;如果是订单号就更危险了,竞对可以直接知道我们一天的单量。所以在一些应用场景下,会需要ID无规则、不规则。

上述123对应三类不同的场景,3和4需求还是互斥的,无法使用同一个方案满足。

同时除了对ID号码自身的要求,业务还对ID号生成系统的可用性要求极高,想象一下,如果ID生成系统瘫痪,整个美团点评支付、优惠券发券、骑手派单等关键动作都无法执行,这就会带来一场灾难。

由此总结下一个ID生成系统应该做到如下几点:

  1. 平均延迟和TP999延迟都要尽可能低;
  2. 可用性5个9;
  3. 高QPS。

常见方法介绍

UUID

UUID(Universally Unique Identifier)的标准型式包含32个16进制数字,以连字号分为五段,形式为8-4-4-4-12的36个字符,示例:550e8400-e29b-41d4-a716-446655440000,到目前为止业界一共有5种方式生成UUID,详情见IETF发布的UUID规范 A Universally Unique IDentifier (UUID) URN Namespace

优点:

  • 性能非常高:本地生成,没有网络消耗。

缺点:

  • 不易于存储:UUID太长,16字节128位,通常以36长度的字符串表示,很多场景不适用。

  • 信息不安全:基于MAC地址生成UUID的算法可能会造成MAC地址泄露,这个漏洞曾被用于寻找梅丽莎病毒的制作者位置。

  • ID作为主键时在特定的环境会存在一些问题,比如做DB主键的场景下,UUID就非常不适用:

    ① MySQL官方有明确的建议主键要尽量越短越好[4],36个字符长度的UUID不符合要求。

All indexes other than the clustered index are known as secondary indexes. In InnoDB, each record in a secondary index contains the primary key columns for the row, as well as the columns specified for the secondary index. InnoDB uses this primary key value to search for the row in the clustered index.** If the primary key is long, the secondary indexes use more space, so it is advantageous to have a short primary key**.

② 对MySQL索引不利:如果作为数据库主键,在InnoDB引擎下,UUID的无序性可能会引起数据位置频繁变动,严重影响性能。

类snowflake方案

这种方案大致来说是一种以划分命名空间(UUID也算,由于比较常见,所以单独分析)来生成ID的一种算法,这种方案把64-bit分别划分成多段,分开来标示机器、时间等,比如在snowflake中的64-bit分别表示如下图(图片来自网络)所示:

image

image

41-bit的时间可以表示(1L<<41)/(1000L360024*365)=69年的时间,10-bit机器可以分别表示1024台机器。如果我们对IDC划分有需求,还可以将10-bit分5-bit给IDC,分5-bit给工作机器。这样就可以表示32个IDC,每个IDC下可以有32台机器,可以根据自身需求定义。12个自增序列号可以表示2^12个ID,理论上snowflake方案的QPS约为409.6w/s,这种分配方式可以保证在任何一个IDC的任何一台机器在任意毫秒内生成的ID都是不同的。

这种方式的优缺点是:

优点:

  • 毫秒数在高位,自增序列在低位,整个ID都是趋势递增的。
  • 不依赖数据库等第三方系统,以服务的方式部署,稳定性更高,生成ID的性能也是非常高的。
  • 可以根据自身业务特性分配bit位,非常灵活。

缺点:

  • 强依赖机器时钟,如果机器上时钟回拨,会导致发号重复或者服务会处于不可用状态。

以上文字摘自:https://tech.meituan.com/MT_Leaf.html

DefaultKeyGenerator

代码入口:

com.dangdang.ddframe.rdb.sharding.keygen.DefaultKeyGenerator

sharding-jdbc的源码

public final class DefaultKeyGenerator implements KeyGenerator {

    public static final long EPOCH;

    // 自增长序列的长度(单位是位时的长度)
    private static final long SEQUENCE_BITS = 12L;

    // workerId的长度(单位是位时的长度)
    private static final long WORKER_ID_BITS = 10L;

    private static final long SEQUENCE_MASK = (1 << SEQUENCE_BITS) - 1;

    private static final long WORKER_ID_LEFT_SHIFT_BITS = SEQUENCE_BITS;

    private static final long TIMESTAMP_LEFT_SHIFT_BITS = WORKER_ID_LEFT_SHIFT_BITS + WORKER_ID_BITS;

    // 位运算计算workerId的最大值(workerId占10位,那么1向左移10位就是workerId的最大值)
    private static final long WORKER_ID_MAX_VALUE = 1L << WORKER_ID_BITS;

    @Setter
    private static TimeService timeService = new TimeService();

    private static long workerId;

    // EPOCH就是起始时间,从2016-11-01 00:00:00开始的毫秒数
    static {
        Calendar calendar = Calendar.getInstance();
        calendar.set(2016, Calendar.NOVEMBER, 1);
        calendar.set(Calendar.HOUR_OF_DAY, 0);
        calendar.set(Calendar.MINUTE, 0);
        calendar.set(Calendar.SECOND, 0);
        calendar.set(Calendar.MILLISECOND, 0);
        EPOCH = calendar.getTimeInMillis();
    }

    private long sequence;

    private long lastTime;

    /**
     * 得到分布式唯一ID需要先设置workerId,workId的值范围[0, 1024)
     * @param workerId work process id
     */
    public static void setWorkerId(final long workerId) {
        // google-guava提供的入参检查方法:workerId只能在0~WORKER_ID_MAX_VALUE之间;
        Preconditions.checkArgument(workerId >= 0L && workerId < WORKER_ID_MAX_VALUE);
        DefaultKeyGenerator.workerId = workerId;
    }

    /**
     * 调用该方法,得到分布式唯一ID
     * @return key type is @{@link Long}.
     */
    @Override
    public synchronized Number generateKey() {
        long currentMillis = timeService.getCurrentMillis();
        // 每次取分布式唯一ID的时间不能少于上一次取时的时间
        Preconditions.checkState(lastTime <= currentMillis, "Clock is moving backwards, last time is %d milliseconds, current time is %d milliseconds", lastTime, currentMillis);
        // 如果同一毫秒范围内,那么自增,否则从0开始
        if (lastTime == currentMillis) {
            // 如果自增后的sequence值超过4096,那么等待直到下一个毫秒
            if (0L == (sequence = ++sequence & SEQUENCE_MASK)) {
                currentMillis = waitUntilNextTime(currentMillis);
            }
        } else {
            sequence = 0;
        }
        // 更新lastTime的值,即最后一次获取分布式唯一ID的时间
        lastTime = currentMillis;
        // 从这里可知分布式唯一ID的组成部分;
        return ((currentMillis - EPOCH) << TIMESTAMP_LEFT_SHIFT_BITS) | (workerId << WORKER_ID_LEFT_SHIFT_BITS) | sequence;
    }

    // 获取下一毫秒的方法:死循环获取当前毫秒与lastTime比较,直到大于lastTime的值;
    private long waitUntilNextTime(final long lastTime) {
        long time = timeService.getCurrentMillis();
        while (time <= lastTime) {
            time = timeService.getCurrentMillis();
        }
        return time;
    }
}

客户端使用,可以直接使用DefaultKeyGenerator.generateKey()方法得到ID

猜你喜欢

转载自blog.csdn.net/u012394095/article/details/81705362
今日推荐