洛谷P3390 【模板】矩阵快速幂

传送门

题意

给定矩阵$A_{n\times n}$,求$A^k$。

$k\leq 10^{12}, n\leq 100$

题解

这不是$\mathcal O(n^3 \lg k)$的矩阵乘法$+$快速幂板子吗。。

这里讲一下矩阵乘法规则:

$$A\times B={\begin{bmatrix} c_{1,1}&c_{1,2}&\cdots&c_{1,n}\\c_{2,1}&c_{2,2}&\cdots&c_{2,n}\\\vdots&\vdots&\cdots&\vdots\\c_{n,1}&c_{n,2}&\cdots&c_{n,n}\end{bmatrix}}$$
其中

$$c_{i,j}=\sum_{k=1}^n A_{i,k}\times B_{k,j} $$

然后嘛。矩阵乘法满足结合律。设$k$偶数,得

$$\begin{aligned}A^k&=A\times A\times\cdots\times A\\&=\left(A^{\frac{k}{2}}\right)\times\left(A^{\frac{k}{2}}\right)\end{aligned}$$

所以。可以用快速幂做啦!

贴代码:

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
typedef array<array<ll, 105>, 105> Matrix;
const ll P = 1000000007;

ll n, k;
Matrix A, I;

Matrix MatrixMul(const Matrix &A, const Matrix &B) {
	Matrix ret;
	for (int i=1; i<=n; i++)
		for (int j=1; j<=n; j++) {
			ret[i][j] = 0;
			for (int k=1; k<=n; k++)
				(ret[i][j] += A[i][k] * B[k][j] % P) %= P;
		}
	return ret;
}
Matrix PowerMod(ll k) {
	if (k == 0) return I;
	if (k == 1) return A;
	if (k & 1) return MatrixMul(PowerMod(k-1), A);
	Matrix B = PowerMod(k >> 1);
	return MatrixMul(B, B);
}

signed main() {
	scanf("%lld%lld", &n,&k);
	for (int i=1; i<=n; i++) {
		for (int j=1; j<=n; j++) scanf("%lld", &A[i][j]);
		I[i][i] = 1;
	}
	Matrix ret = PowerMod(k);
	for (int i=1; i<=n; i++) {
		for (int j=1; j<=n; j++) printf("%lld ", ret[i][j]);
		puts("");
	}
	return 0;
}

猜你喜欢

转载自www.cnblogs.com/mchmch/p/luogu-p3390.html