DP动态规划


******************************************************************************************

动态规划英语Dynamic programming,DP)是一种在数学计算机科学经济学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。 动态规划常常适用于有重叠子问题最优子结构性质的问题,动态规划方法所耗时间往往远少于朴素解法。

动态规划背后的基本思想非常简单。大致上,若要解一个给定问题,我们需要解其不同部分(即子问题),再合并子问题的解以得出原问题的解。 通常许多子问题非常相似,为此动态规划法试图仅仅解决每个子问题一次,从而减少计算量: 一旦某个给定子问题的解已经算出,则将其记忆化存储,以便下次需要同一个子问题解之时直接查表。 这种做法在重复子问题的数目关于输入的规模呈指数增长时特别有用。

动态规划问题满足三大重要性质

最优子结构性质:如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质(即满足最优化原理)。最优子结构性质为动态规划算法解决问题提供了重要线索。

子问题重叠性质:子问题重叠性质是指在用递归算法自顶向下对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只计算一次,然后将其计算结果保存在一个表格中,当再次需要计算已经计算过的子问题时,只是在表格中简单地查看一下结果,从而获得较高的效率。

无后效性将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又称为无后效性。

********************************************************************************************


通过几天的学习,大概了解DP的原理。一般都基于一个递推公式,当前的问题由上一个或问题推导而得到结果,一直递推下去,得到最终结果。在此引用一位博主举的例子,个人感觉比较清晰易懂。


如果我们有面值为1元、3元和5元的硬币若干枚,如何用最少的硬币凑够11元? 

我们凭直观感觉告诉自己,先选面值最大,因此最多选25元的硬币,现在是10元了,还差一元,接下来我们挑选第二大的3元硬币,发现不行(10+3=13超了),因此我们继续选第三大的硬币也就是1元硬币,选一个就可以(10+1=11),所以总共用了3枚硬币凑够了11元。这就是贪心法,每次选最大的。但是我们将面值改为2元,3元和5元的硬币,再用贪心法就不行了。为什么呢?按照贪心思路,我们同样先取2枚最大5元硬币,现在10元了,还差一元,接下来选第二大的,发现不行,再选第三大的,还是不行,这时用贪心方法永远凑不出11元,但是你仔细看看,其实我们可以凑出11元的,23元硬币和1枚五元硬币就行了,这是人经过思考判断出来了的,但是怎么让计算机算出来呢?这就要用动态规划的思想:

首先我们思考一个问题,如何用最少的硬币凑够i(i<11)?为什么要这么问呢?两个原因:1.当我们遇到一个大问题时,总是习惯把问题的规模变小,这样便于分析讨论。 2.这个规模变小后的问题和原来的问题是同质的,除了规模变小,其它的都是一样的,本质上它还是同一个问题(规模变小后的问题其实是原问题的子问题)

好了,让我们从最小的i开始吧。当i=0,即我们需要多少个硬币来凑够0元。由于135都大于0,即没有比0小的币值,因此凑够0元我们最少需要0个硬币。 (这个分析很傻是不是?别着急,这个思路有利于我们理清动态规划究竟在做些什么。这时候我们发现用一个标记来表示这句凑够0元我们最少需要0个硬币。会比较方便,如果一直用纯文字来表述,不出一会儿你就会觉得很绕了。那么,我们用d(i)=j来表示凑够i元最少需要j个硬币。于是我们已经得到了d(0)=0,表示凑够0元最小需要0个硬币。当i=1时,只有面值为1元的硬币可用,因此我们拿起一个面值为1的硬币,接下来只需要凑够0元即可,而这个是已经知道答案的,即d(0)=0。所以,d(1)=d(1-1)+1=d(0)+1=0+1=1。当i=2时,仍然只有面值为1的硬币可用,于是我拿起一个面值为1的硬币,接下来我只需要再凑够2-1=1元即可(记得要用最小的硬币数量),而这个答案也已经知道了。所以d(2)=d(2-1)+1=d(1)+1=1+1=2。一直到这里,你都可能会觉得,好无聊,感觉像做小学生的题目似的。因为我们一直都只能操作面值为1的硬币!耐心点,让我们看看i=3时的情况。当i=3时,我们能用的硬币就有两种了:1元的和3元的( 5元的仍然没用,因为你需要凑的数目是3元!5元太多了亲)。既然能用的硬币有两种,我就有两种方案。如果我拿了一个1元的硬币,我的目标就变为了:凑够3-1=2元需要的最少硬币数量。即d(3)=d(3-1)+1=d(2)+1=2+1=3。这个方案说的是,我拿31元的硬币;第二种方案是我拿起一个3元的硬币,我的目标就变成:凑够3-3=0元需要的最少硬币数量。即d(3)=d(3-3)+1=d(0)+1=0+1=1. 这个方案说的是,我拿13元的硬币。好了,这两种方案哪种更优呢?记得我们可是要用最少的硬币数量来凑够3元的。所以,选择d(3)=1,怎么来的呢?具体是这样得到的:d(3)=min{d(3-1)+1, d(3-3)+1}

OK,码了这么多字讲具体的东西,让我们来点抽象的。从以上的文字中,我们要抽出动态规划里非常重要的两个概念:状态和状态转移方程。

上文中d(i)表示凑够i元需要的最少硬币数量,我们将它定义为该问题的"状态",这个状态是怎么找出来的呢?根据子问题定义状态。你找到子问题,状态也就浮出水面了。最终我们要求解的问题,可以用这个状态来表示:d(11),即凑够11元最少需要多少个硬币。那状态转移方程是什么呢?既然我们用d(i)表示状态,那么状态转移方程自然包含d(i),上文中包含状态d(i)的方程是:d(3)=min{d(3-1)+1, d(3-3)+1}。没错,它就是状态转移方程,描述状态之间是如何转移的。当然,我们要对它抽象一下,

d(i)=min{ d(i-vj)+1 },其中i-vj >=0vj表示第j个硬币的面值;

有了状态和状态转移方程,这个问题基本上也就解决了。当然了,Talk is cheap,show me the code!

[cpp]  view plain  copy
 print ? 在CODE上查看代码片 派生到我的代码片
  1. int main()  
  2. {  
  3.     int a[3] = {1,3,5},sum = 11,cent = 0,dp[12];  
  4.     dp[0] = 0;  
  5.     for(int i = 1; i <= sum; i++) dp[i] = i;//我们假设存在1元的硬币那么i元最多只需要i枚1元硬币,当然最好设置dp[i]等于无穷大  
  6.    
  7.     for(int i = 1; i <= sum; i++){  
  8.         for(int j = 0; j < 3; j++){  
  9.             if(i >= a[j] && dp[i - a[j]] + 1 < dp[i]){  
  10.                 dp[i] = dp[i- a[j] ] + 1;  
  11.             }  
  12.         }  
  13.     }  
  14.     cout<<dp[sum]<<endl;  
  15.     return 0;  
  16. }  


 

下图是当i011时的解:


 

从上图可以得出,要凑够11元至少需要3枚硬币。

此外,通过追踪我们是如何从前一个状态值得到当前状态值的,可以找到每一次我们用的是什么面值的硬币。比如,从上面的图我们可以看出,最终结果d(11)=d(10)+1(面值为1),而d(10)=d(5)+1(面值为5),最后d(5)=d(0)+1 (面值为5)。所以我们凑够11元最少需要的3枚硬币是:1元、5元、5元。


猜你喜欢

转载自blog.csdn.net/skuart/article/details/71189312