Devices Tree加载流程

 

  1. DT.IMG布局

hdr

zImage

Ramdisk.img

DT.img

其中DT.imgDTBTOOL打包所有编译生成的dtb生成;布局如下:

DT header

dt_entry_0

dt_entry_1

dt_entry_2

……

其中dt_entry_x对应是某棵DeviceTree编译输出的***.dtb

  1. Bootloader 加载DviceTree

    函数 int boot_linux_from_mmc(void)

     

     

    Bootloader

    正常启动时把zImageramdisk.img以及某个dt_entry_xdt.img中包含多个条目)分别从存储器(这里以eMMC为例)中读取到RAM中的具体位置。

    具体加载哪个dt_entry_x,有bootloader根据基板信息(platform_id/target_id/soc_version)等按照某个策略找到最匹配的。

    1. 调用boot_linux();

boot_linux((void *)hdr->kernel_addr,

(void *)hdr->tags_addr,

     (const char *)hdr->cmdline,

board_machtype(),

         (void *)hdr->ramdisk_addr,

hdr->ramdisk_size);

其中参数:

kernel_addr : zImageRAM中的地址;

tags_addr : dt_entryRAM中的地址;

cmdline : 是编译zImage时打包进去的,;

如下:

[mkbooting —kernel$KERNEL ramdisk ./booting/ramdisk $BOARD_CFG.img

—cmdline

"console=ttyHSL0,115200,n8,

androidboot.console=ttyHSL0

androidboot.hardware=qcom

user_debug=31

msm_rtb.filter=0x37"

--base 0x0000 0000—pagesize2048—ramdisk_offset 0x0200 0000

--tags_offset 0x01E0 0000 –dt ./booting/dt_$BOARD_CFG.img –output $BOOTIMG]

machtype 目前在高通平台没有使用

ramdisk ramdiskRAM中的地址

ramdisk_size ramdisk的大小

 

  1. 调用update_device_tree();函数把commandline/ramdisk/ramdisk_size等信息更新到devicetree中的对应节点中。

update_device_tree(

(void *)tags,

(const char *)final_cmdline,

ramdisk, ramdisk_size

);

/chosen/bootargs ßfinal_cmdline

/chosen/linux,initrd-start ßramdisk

/chosen/linux,initrd-end ßramdisk+ramdisk_size

注释:这里的final_cmdline,有boot_linux中的cmdlinelk动态配置的commandline组合而成;

比如说pwr_reasonlcd信息等。

 

  1. 调用entry(0, machtype, (unsigned*)tags_phys);启动内核!

    向内核传递的信息只有machtype(unsigned*)tags_phys;其中machtype为零、tags_phys为对应的devicetreedtb)在RAM中的地址。

  1. Kernel展开DTB
    1. 内核通过DeviceTree识别特定的machineDT_MACHINE_START

      Kernel的函数在Head.S中的ENTRY(stext),此时的寄存器r1,r2分别存储着machtypedevicetreedtb)的地址;

 

  1. 并调用kernel如下

str r1,[r5] @Save machine type

str r2,[r6] @Save atags pointer

b start_kernel

此时r1r2的值存储到r[5],r[6];也就是_machine_arch_type_atags_pointer中,以便在C代码空间访问。

 

  1. 进入main.c中的start_kernel()函数,调用setup_arch()函数

进入setup.c中的setup_arch()函数,调用setup_machine_fdt()函数

进入devtree.c中的setup_machine_fdt()函数,在mdesc(即machine_desc)的table中搜索与DT数据最匹配的machine。设备树根节点的compatible属性跟mdesctable数组相比较决定最匹配的machine。找到最匹配的machine后,setup_machine_fdt()返回machine_desc数组的基地址,否则返回null

/**

* setup_machine_fdt - Machine setup when an dtb was passed to the kernel

* @dt_phys: physical address of dt blob

* If a dtb was passed to the kernel in r2, then use it to choose the

* correct machine_desc and to setup the system.

*/

const struct machine_desc * __init setup_machine_fdt(unsigned int dt_phys)

{

    const struct machine_desc *mdesc, *mdesc_best = NULL;

#ifdef CONIG_FARCH_MULTIPLATFORM

    DT_MACHINE_START(GENERIC_DT, "Generic DT based system")

    MACHINE_END

    mdesc_best = &__mach_desc_GENERIC_DT;

#endif

    if (!dt_phys || !early_init_dt_verify(phys_to_virt(dt_phys)))

        return NULL;

    mdesc = of_flat_dt_match_machine(mdesc_best, arch_get_next_mach);

    if (!mdesc) {

        const char *prop;

        int size;

        unsigned long dt_root;

        early_print("\nError: unrecognized/unsupported "

             "device tree compatible list:\n[ ");

        dt_root = of_get_flat_dt_root();

        prop = of_get_flat_dt_prop(dt_root, "compatible", &size);

        while (size > 0) {

            early_print("'%s' ", prop);

            size -= strlen(prop) + 1;

            prop += strlen(prop) + 1;

        }

        early_print("]\n\n");

        dump_machine_table(); /* does not return */

    }

    /* We really don't want to do this, but sometimes firmware provides buggy data */

    if (mdesc->dt_fixup)

        mdesc->dt_fixup();

    early_init_dt_scan_nodes();

    /* Change machine number to match the mdesc we're using */

    __machine_arch_type = mdesc->nr;

    return mdesc;

}

 

  1. 设备加载流程

    上述3得到基地址后会初始化板级信息

msm8953为例:

#include <linux/kernel.h>

#include <asm/mach/arch.h>

#include "board-dt.h"

 

static const char *msm8953_dt_match[] __initconst = {

    "qcom,msm8953",

    "qcom,apq8053",

    NULL

};

static void __init msm8953_init(void)

{

    board_dt_populate(NULL);

}

DT_MACHINE_START(MSM8953_DT,

    "Qualcomm Technologies, Inc. MSM 8953 (Flattened Device Tree)")

    .init_machine = msm8953_init,

    .dt_compat = msm8953_dt_match,

MACHINE_END

 

  1. start_kernel()开启新的线程kernel_init(),并根据devicetree创建设备。

    start_kernel(void)—> kernel_init(void *unused)—> kernel_init_freeable()—> do_basic_setup()—> do_initcalls();do_initcalls()完成各个等级的初始化工作,涉及devicetree初始化工作如下:

static int __init customize_machine(void)

{

    of_clk_init(NULL);

    /*

     * Traverses flattened DeviceTree - registering platform devices

     * (if any) complete with their resources

     */

    of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL);

    if (machine_desc->init_machine)

        machine_desc->init_machine();

    return 0;

}

arch_initcall(customize_machine);

也就是回调具体的DT_MACHINE中的 init_machine msm8953为例就是 msm8953_init

msm8953_init()函数:

static void __init msm8953_init(void)

{

    board_dt_populate(NULL);

}

void __init board_dt_populate(struct of_dev_auxdata *adata)

{

    of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL);

 

    /* Explicitly parent the /soc devices to the root node to preserve

     * the kernel ABI (sysfs structure, etc) until userspace is updated

     */

    of_platform_populate(of_find_node_by_path("/soc"),

             of_default_bus_match_table, adata, NULL);

}

of_platform_populate 递归完成device的创建工作。

linux设备模型里, 假设它的所有设备是连接在bus controller上的子设备.e.g. i2c_client i2c_master的子设备;唯一没有特定父设备类型的模型就是platform_device.

调用of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL)完成根设备节点创建。调用of_platform_populate(of_find_node_by_path("/soc"),of_default_bus_match_table, adata, NULL);完成/soc下相关节点设备的创建。

 

  1. Linux下的i2c驱动
    1. 设备模型

      由总线(bus_type+设备(device+驱动(device_driver)组成,在该模型下,所有的设备通过总线连接起来,即使有些设备没有连接到一根物理总线上,linux为其设置了一个内部的、虚拟的platform总线,用以维持

      总线、驱动、设备的关系。

      对于实现一个Linux下的设备驱动,可以分为两大步:

      1. 设备注册
      2. 驱动注册

      当然还有一些细节问题:

      1. 驱动的probe函数
      2. 驱动和设备是怎么绑定的

         

    2. i2c设备驱动的几个数据结构
      1. i2c_adapter:

        每一个i2c_adapter对应一个物理上的i2c控制器,在i2c总线驱动probe函数中动态创建。通过i2c_adapter注册到i2c_core

/*

* i2c_adapter is the structure used to identify a physical i2c bus along

* with the access algorithms necessary to access it.

*/

struct i2c_adapter {

    struct module *owner;

    unsigned int class;         /* classes to allow probing for */

    const struct i2c_algorithm *algo; /* the algorithm to access the bus */

    void *algo_data;

 

    /* data fields that are valid for all devices    */

    struct rt_mutex bus_lock;

 

    int timeout;            /* in jiffies */

    int retries;

    struct device dev;        /* the adapter device */

 

    int nr;

    char name[48];

    struct completion dev_released;

 

    struct mutex userspace_clients_lock;

    struct list_head userspace_clients;

 

    struct i2c_bus_recovery_info *bus_recovery_info;

};

 

  1. i2c_algorithm:

    i2c_algorithm中的关键函数master_xfer(),i2c_msg为单位产生i2c访问需要的信号,不同平台所对应的master_xfer()是不同的,需要根据所用平台的硬件特性实现自己的xxx_xfer()方法以填充i2c_algorithmmaster_xfer指针;

/**

* struct i2c_algorithm - represent I2C transfer method

* @master_xfer: Issue a set of i2c transactions to the given I2C adapter

* defined by the msgs array, with num messages available to transfer via

* the adapter specified by adap.

* @smbus_xfer: Issue smbus transactions to the given I2C adapter. If this

* is not present, then the bus layer will try and convert the SMBus calls

* into I2C transfers instead.

* @functionality: Return the flags that this algorithm/adapter pair supports

* from the I2C_FUNC_* flags.

*

* The following structs are for those who like to implement new bus drivers:

* i2c_algorithm is the interface to a class of hardware solutions which can

* be addressed using the same bus algorithms - i.e. bit-banging or the PCF8584

* to name two of the most common.

*

* The return codes from the @master_xfer field should indicate the type of

* error code that occured during the transfer, as documented in the kernel

* Documentation file Documentation/i2c/fault-codes.

*/

struct i2c_algorithm {

    /* If an adapter algorithm can't do I2C-level access, set master_xfer

     to NULL. If an adapter algorithm can do SMBus access, set

     smbus_xfer. If set to NULL, the SMBus protocol is simulated

     using common I2C messages */

    /* master_xfer should return the number of messages successfully

     processed, or a negative value on error */

    int (*master_xfer)(struct i2c_adapter *adap, struct i2c_msg *msgs,

             int num);

    int (*smbus_xfer) (struct i2c_adapter *adap, u16 addr,

             unsigned short flags, char read_write,

             u8 command, int size, union i2c_smbus_data *data)

    /* To determine what the adapter supports */

    u32 (*functionality) (struct i2c_adapter *);

};

 

  1. i2c_client:

    代表一个挂载到i2c总线上的i2c从设备,包含该设备所需要的数据:

    i2c从设备所依附的i2c控制器 strut i2c_adapter *adapter

    i2c从设备的驱动程序 struct i2c_driver *driver

    i2c从设备的访问地址addr

    i2c从设备的名称name

/**

* struct i2c_client - represent an I2C slave device

* @flags: I2C_CLIENT_TEN indicates the device uses a ten bit chip address;

*    I2C_CLIENT_PEC indicates it uses SMBus Packet Error Checking

* @addr: Address used on the I2C bus connected to the parent adapter.

* @name: Indicates the type of the device, usually a chip name that's

*    generic enough to hide second-sourcing and compatible revisions.

* @adapter: manages the bus segment hosting this I2C device

* @dev: Driver model device node for the slave.

* @irq: indicates the IRQ generated by this device (if any)

* @detected: member of an i2c_driver.clients list or i2c-core's

*    userspace_devices list

*

* An i2c_client identifies a single device (i.e. chip) connected to an

* i2c bus. The behaviour exposed to Linux is defined by the driver

* managing the device.

*/

struct i2c_client {

    unsigned short flags;        /* div., see below        */

    unsigned short addr;        /* chip address - NOTE: 7bit    */

                    /* addresses are stored in the    */

                    /* _LOWER_ 7 bits        */

    char name[I2C_NAME_SIZE];

    struct i2c_adapter *adapter;    /* the adapter we sit on    */

    struct device dev;        /* the device structure        */

    int irq;            /* irq issued by device        */

    struct list_head detected;

};

 

  1. i2c总线驱动
    1. 功能划分

      从硬件功能上可划分为:i2c控制器和i2c外设(从设备)。每个i2c控制器总线上都可以挂载多个i2c外设。Linux中对i2c控制器和外设分开管理:通过i2c-msm-qup.c文件完成i2c控制器的设备注册和驱动注册;通过i2c-core.c为具体的i2c外设提供了统一的设备注册接口和驱动注册接口,它分离了设备驱动和硬件控制的实现细节。

      需要注意的是:设备与驱动的对应关系是多对一的;即如果设备类型是一样的,会共用同一套驱动。

       

    2. 设备注册

      i2c控制器设备注册为platform设备,为每一个控制器定义一个struct platform_device数据结构,并且把.name都设置为"i2c_qup"。后面会通过名字进行匹配驱动的。然后是调用platform_device_register()函数,将设备注册到platform bus上。

static struct of_device_id i2c_qup_dt_match[] = {

    {

        .compatible = "qcom,i2c-qup",

    },

    {}

};

 

static struct platform_driver qup_i2c_driver = {

    .probe        = qup_i2c_probe,

    .remove        = qup_i2c_remove,

    .driver        = {

        .name    = "i2c_qup",

        .owner    = THIS_MODULE,

        .pm = &i2c_qup_dev_pm_ops,

        .of_match_table = i2c_qup_dt_match,

    },

};

设备注册完成后其直观的表现就是在文件系统下出现:sys/bus/platform/devices/xxx.o

通过platform_device_register()函数进行注册的过程,就是对platform_device这个数据结构的更改,逐步完成.dev.parent/.dev.kobj/.dev.bus的赋值,然后将.dev.kobj加入到platform_busàkobj的链表上。

  1. 驱动注册步骤和设备注册类似,也是为驱动定义了一个数据结构:

static struct of_device_id i2c_qup_dt_match[] = {

    {

        .compatible = "qcom,i2c-qup",

    },

    {}

};

 

static struct platform_driver qup_i2c_driver = {

    .probe        = qup_i2c_probe,

    .remove        = qup_i2c_remove,

    .driver        = {

        .name    = "i2c_qup",

        .owner    = THIS_MODULE,

        .pm = &i2c_qup_dev_pm_ops,

        .of_match_table = i2c_qup_dt_match,

    },

};

 

/* QUP may be needed to bring up other drivers */

int __init qup_i2c_init_driver(void)

{

    static bool initialized;

 

    if (initialized)

        return 0;

    else

        initialized = true;

 

    return platform_driver_register(&qup_i2c_driver);

}

EXPORT_SYMBOL(qup_i2c_init_driver);

arch_initcall(qup_i2c_init_driver);

 

static void __exit qup_i2c_exit_driver(void)

{

    platform_driver_unregister(&qup_i2c_driver);

}

module_exit(qup_i2c_exit_driver);

 

  1. 设备与驱动匹配

    match过程:

    i2c_core.c: i2c_add_driver()—>i2c_register_driver()—>i2c_bus_type—>i2c_device_match()—>of_driver_match_device(),用驱动的信息与devicenode处匹配,如果相同,则匹配,匹配上之后运行driver_register调用

    driver_probe_devicedd.c中)进行设备与驱动的绑定。

  2. probe绑定过程

    初始化.probe.remove函数,然后调用i2c_add_driver进行注册,主要调用函数流程:

    i2c_add_driver—>i2c_register_driver—>bus_add_driver—>driver_attach—>driver_probe_device—>really_probe(里面讲设备的驱动指针指向驱动,如果匹配成功,执行dev>bus—>probe即设备驱动里的probe函数)—>driver_bound(绑定)

    需要注意的是driver_attach,这个函数遍历了总线上(platform_bus_type)的所有设备,寻找与驱动匹配的设备,并把满足条件的设备结构体上的驱动指针指向驱动,从而完成了驱动和设备的匹配(_driver_attach函数完成)

    如果匹配到设备,这是就需要执行platform_bus_typeprobe函数,最终会调用驱动的probe函数。

 

  1.  

     

     

     

猜你喜欢

转载自www.cnblogs.com/yejintianming00/p/9339773.html