数论之Miller-Rabin

 一个数是素数(也叫质数),当且仅当它的约数只有两个——1和它本身。规定这两个约数不能相同,因此1不是素数。对素数的研究属于数论范畴,你可以 看到许多数学家没事就想出一些符合某种性质的素数并称它为某某某素数。整个数论几乎就围绕着整除和素数之类的词转过去转过来。对于写代码的人来说,素数比 想像中的更重要,Google一下BigPrime或者big_prime你总会发现大堆大堆用到了素数常量的程序代码。平时没事时可以记一些素数下来以 备急用。
     素数有很多神奇的性质。我写5个在下面供大家欣赏。

1. 素数的个数无限多(不存在最大的素数)
    证明:反证法,假设存在最大的素数P,那么我们可以构造一个新的数2 * 3 * 5 * 7 * … * P + 1(所有的素数乘起来加1)。显然这个数不能被任一素数整除(所有素数除它都余1),这说明我们找到了一个更大的素数。

2. 存在任意长的一段连续数,其中的所有数都是合数(相邻素数之间的间隔任意大)
    证明:当0<a<=n时,n!+a能被a整除。长度为n-1的数列n!+2, n!+3, n!+4, …, n!+n中,所有的数都是合数。这个结论对所有大于1的整数n都成立,而n可以取到任意大。

3. 所有大于2的素数都可以唯一地表示成两个平方数之差。
    证明:大于2的素数都是奇数。假设这个 数是2n+1。由于(n+1)^2=n^2+2n+1,(n+1)^2和n^2就是我们要找的两个平方数。下面证明这个方案是唯一的。如果素数p能表示成 a^2-b^2,则p=a^2-b^2=(a+b)(a-b)。由于p是素数,那么只可能a+b=p且a-b=1,这给出了a和b的唯一解。

4. 当n为大于2的整数时,2^n+1和2^n-1两个数中,如果其中一个数是素数,那么另一个数一定是合数。
    证明:2^n不能被3整除。如果它被3除余1,那么2^n-1就能被3整除;如果被3除余2,那么2^n+1就能被3整除。总之,2^n+1和2^n-1中至少有一个是合数。

    可惜最后这个定理最初不是我证明的。这是大数学家Fermat证明的,叫做Fermat小定理(Fermat's Little Theorem)(费马小定理)。Euler对这个定理进行了推广,叫做Euler定理。Euler一生的定理太多了,为了和其它的“Euler定理”区别开来,有些地 方叫做Fermat小定理的Euler推广。Euler定理中需要用一个函数f(m),它表示小于m的正整数中有多少个数和m互素(两个数只有公约数1称 为互素)。为了方便,我们通常用记号φ(m)来表示这个函数(称作Euler函数)。Euler指出,如果a和m互素,那么a^φ(m) ≡ 1 (mod m)。可以看到,当m为素数时,φ(m)就等于m-1(所有小于m的正整数都与m互素),因此它是Fermat小定理的推广。定理的证明和Fermat小 定理几乎相同,只是要考虑的式子变成了所有与m互素的数的乘积:m_1 * m_2 … m_φ(m) ≡ (a * m_1)(a * m_2) … (a * m_φ(m)) (mod m)。我为什么要顺便说一下Euler定理呢?因为下面一句话可以增加我网站的PV:这个定理出现在了The Hundred Greatest Theorems里。

    谈到Fermat小定理,数学历史上有很多误解。很长一段时间里,人们都认为Fermat小定理的逆命题是正确的,并且有人亲自验证了 a=2, p<300的所有情况。国外甚至流传着一种说法,认为中国在孔子时代就证明了这样的定理:如果n整除2^(n-1)-1,则n就是素数。后来某个英 国学者进行考证后才发现那是因为他们翻译中国古文时出了错。1819年有人发现了Fermat小定理逆命题的第一个反例:虽然2的340次方除以341余 1,但341=11*31。后来,人们又发现了561, 645, 1105等数都表明a=2时Fermat小定理的逆命题不成立。虽然这样的数不多,但不能忽视它们的存在。于是,人们把所有能整除2^(n-1)-1的合 数n叫做伪素数(pseudoprime),意思就是告诉人们这个素数是假的。
    不满足2^(n-1) mod n = 1的n一定不是素数;如果满足的话则多半是素数。这样,一个比试除法效率更高的素性判断方法出现了:制作一张伪素数表,记录某个范围内的所有伪素数,那么 所有满足2^(n-1) mod n = 1且不在伪素数表中的n就是素数。之所以这种方法更快,是因为我们可以使用二分法快速计算2^(n-1) mod n 的值,这在计算机的帮助下变得非常容易;在计算机中也可以用二分查找有序数列、Hash表开散列、构建Trie树等方法使得查找伪素数表效率更高。
    有 人自然会关心这样一个问题:伪素数的个数到底有多少?换句话说,如果我只计算2^(n-1) mod n的值,事先不准备伪素数表,那么素性判断出错的概率有多少?研究这个问题是很有价值的,毕竟我们是OIer,不可能背一个长度上千的常量数组带上考场。 统计表明,在前10亿个自然数中共有50847534个素数,而满足2^(n-1) mod n = 1的合数n有5597个。这样算下来,算法出错的可能性约为0.00011。这个概率太高了,如果想免去建立伪素数表的工作,我们需要改进素性判断的算 法。

    最简单的想法就是,我们刚才只考虑了a=2的情况。对于式子a^(n-1) mod n,取不同的a可能导致不同的结果。一个合数可能在a=2时通过了测试,但a=3时的计算结果却排除了素数的可能。于是,人们扩展了伪素数的定义,称满足 a^(n-1) mod n = 1的合数n叫做以a为底的伪素数(pseudoprime to base a)。前10亿个自然数中同时以2和3为底的伪素数只有1272个,这个数目不到刚才的1/4。这告诉我们如果同时验证a=2和a=3两种情况,算法出错 的概率降到了0.000025。容易想到,选择用来测试的a越多,算法越准确。通常我们的做法是,随机选择若干个小于待测数的正整数作为底数a进行若干次 测试,只要有一次没有通过测试就立即把这个数扔回合数的世界。这就是Fermat素性测试。
    人们自然会想,如果考虑了所有小于n的底数a,出错的概率是否就可以降到0呢?没想 到的是,居然就有这样的合数,它可以通过所有a的测试(这个说法不准确,详见我在地核楼层的回复)。Carmichael第一个发现这样极端的伪素数,他 把它们称作Carmichael数。你一定会以为这样的数一定很大。错。第一个Carmichael数小得惊人,仅仅是一个三位数,561。前10亿个自 然数中Carmichael数也有600个之多。Carmichael数的存在说明,我们还需要继续加强素性判断的算法。

    Miller和Rabin两个人的工作让Fermat素性测试迈出了革命性的一步,建立了传说中的Miller-Rabin素性测试算法。 新的测试基于下面的定理:如果p是素数,x是小于p的正整数,且x^2 mod p = 1,那么要么x=1,要么x=p-1。这是显然的,因为x^2 mod p = 1相当于p能整除x^2-1,也即p能整除(x+1)(x-1)。由于p是素数,那么只可能是x-1能被p整除(此时x=1)或x+1能被p整除(此时 x=p-1)。
    我们下面来演示一下上面的定理如何应用在Fermat素性测试上。前面说过341可以通过以2为底的Fermat测试,因 为2^340 mod 341=1。如果341真是素数的话,那么2^170 mod 341只可能是1或340;当算得2^170 mod 341确实等于1时,我们可以继续查看2^85除以341的结果。我们发现,2^85 mod 341=32,这一结果摘掉了341头上的素数皇冠,面具后面真实的嘴脸显现了出来,想假扮素数和我的素MM交往的企图暴露了出来。
    这就 是Miller-Rabin素性测试的方法。不断地提取指数n-1中的因子2,把n-1表示成d*2^r(其中d是一个奇数)。那么我们需要计算的东西就 变成了a的d*2^r次方除以n的余数。于是,a^(d * 2^(r-1))要么等于1,要么等于n-1。如果a^(d * 2^(r-1))等于1,定理继续适用于a^(d * 2^(r-2)),这样不断开方开下去,直到对于某个i满足a^(d * 2^i) mod n = n-1或者最后指数中的2用完了得到的a^d mod n=1或n-1。这样,Fermat小定理加强为如下形式:
    尽可能提取因子2, 把n-1表示成d*2^r,如果n是一个素数,那么或者a^d mod n=1,或者存在某个i使得a^(d*2^i) mod n=n-1 ( 0<=i<r ) (注意i可以等于0,这就把a^d mod n=n-1的情况统一到后面去了)
    Miller-Rabin 素性测试同样是不确定算法,我们把可以通过以a为底的Miller-Rabin测试的合数称作以a为底的强伪素数(strong pseudoprime)。第一个以2为底的强伪素数为2047。第一个以2和3为底的强伪素数则大到1 373 653。

上述内容便于读者有个大概的认识

下面是Miller-Rabin的算法流程

1.先判断是不是2,是的话就返回true。

2.判断是不是小于2的,或合数,是的话就返回false。

3.令n-1=u*2t,求出u,t,其中u是奇数。

4.随机取一个a,且1<a<n

(根据费马小定理,如果a^(n-1)≡1(mod p)那么n就极有可能是素数,如果等式不成立,那肯定不是素数了

因为n-1=u*2t,所以a^(n-1)=a^(u*2t)=(au)^2t。)

5.所以我们令x=au%n

6.然后是t次循环,每次循环都让y=(x*x)%n,x=y,这样t次循环之后x=a^(u*2t)=an-1

7.因为循环的时候y=(x*x)%n,且x肯定是小于n的,正好可以用二次探测定理,

如果(x^2)%n==1,也就是y等于1的时候,假如n是素数,那么x==1||x==n-1,如果x!=1&&x!=n-1,那么n肯定不是素数了,返回false。

8.运行到这里的时候x=a^(n-1),根据费马小定理,x!=1的话,肯定不是素数了,返回false

9.因为Miller-Rabin得到的结果的正确率为 75%,所以要多次循环步骤4~8来提高正确率

10.循环多次之后还没返回,那么n几乎可以肯定是素数了,返回true

代码如下:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<time.h>
#define ll long long
using namespace std;

ll qpow(ll x,ll y,ll mod)//快速幂取模 
{
    ll r=1;
    for (;y;y>>=1,x=x*x%mod) if (y&1) r=r*x%mod;
    return r; 
}
bool is_prime(ll n)
{
    if (n<2) return false;
    if (n==2) return true;
    if (!(n&1)) return false;
    ll u=n-1,t=0;
    while (!(u&1))//算出u,t 
    {
        t++;
        u>>=1;
    }
    for (int i=1;i<=20;i++)
    {
        ll a=rand()%(n-1)+1;
        ll x=qpow(a,u,n),y;
        for (int j=1;j<=t;j++)
        {
            y=x*x%n;
            if (y==1&&x!=1&&x!=n-1) return false;//二次探测定理 
            x=y;
        }
        if (x!=1) return false;//费马小定理 
    }
    return true;
}
int main()
{
    srand(time(0));
    ll n;
    scanf("%lld",&n);
    if (is_prime(n)) puts("YES");
    else puts("NO");
    return 0;
}

猜你喜欢

转载自www.cnblogs.com/xxzh/p/9328883.html